Skip to content

CodingAnarchy/hammerwork

Repository files navigation

Hammerwork

A high-performance, database-driven job queue for Rust with comprehensive features for production workloads.

Features

  • 🔐 Job Encryption & PII Protection: Enterprise-grade encryption for sensitive job payloads with AES-256-GCM and ChaCha20-Poly1305, field-level PII protection, and configurable retention policies
  • 🗝️ Advanced Key Management: Complete key lifecycle management with master key encryption, automatic rotation, audit trails, and external KMS integration
  • 🚀 Dynamic Job Spawning: Jobs can dynamically create child jobs during execution for fan-out processing patterns, with full parent-child relationship tracking and lineage management
  • 📊 Web Dashboard: Modern real-time web interface for monitoring queues, managing jobs, and system administration with authentication and WebSocket updates
  • 🧪 TestQueue Framework: Complete in-memory testing implementation with MockClock for deterministic testing of time-dependent features, workflows, and job processing
  • 🔍 Job Tracing & Correlation: Comprehensive distributed tracing with OpenTelemetry integration, trace IDs, correlation IDs, and lifecycle event hooks
  • 🔗 Job Dependencies & Workflows: Create complex data processing pipelines with job dependencies, sequential chains, and parallel processing with synchronization barriers
  • 🗄️ Job Archiving & Retention: Policy-driven archival with configurable retention periods, payload compression, and automated cleanup for compliance and performance
  • Multi-database support: PostgreSQL and MySQL backends with optimized dependency queries
  • Advanced retry strategies: Exponential backoff, linear, Fibonacci, and custom retry patterns with jitter
  • Job prioritization: Five priority levels with weighted and strict scheduling algorithms
  • Result storage: Database and in-memory result storage with TTL and automatic cleanup
  • Worker autoscaling: Dynamic worker pool scaling based on queue depth and configurable thresholds
  • Batch operations: High-performance bulk job enqueuing with optimized worker processing
  • Cron scheduling: Full cron expression support with timezone awareness
  • Rate limiting: Token bucket rate limiting with configurable burst limits
  • Monitoring: Prometheus metrics and advanced alerting (enabled by default)
  • Job timeouts: Per-job and worker-level timeout configuration
  • Statistics: Comprehensive job statistics and dead job management
  • Async/await: Built on Tokio for high concurrency
  • Type-safe: Leverages Rust's type system for reliability

Installation

Core Library

[dependencies]
# Default features include metrics and alerting
hammerwork = { version = "1.12", features = ["postgres"] }
# or
hammerwork = { version = "1.12", features = ["mysql"] }

# With encryption for PII protection
hammerwork = { version = "1.12", features = ["postgres", "encryption"] }

# With AWS KMS integration for enterprise key management
hammerwork = { version = "1.12", features = ["postgres", "encryption", "aws-kms"] }

# With Google Cloud KMS integration for enterprise key management
hammerwork = { version = "1.12", features = ["postgres", "encryption", "gcp-kms"] }

# With HashiCorp Vault KMS integration for enterprise key management
hammerwork = { version = "1.12", features = ["postgres", "encryption", "vault-kms"] }

# With distributed tracing
hammerwork = { version = "1.12", features = ["postgres", "tracing"] }

# Full feature set
hammerwork = { version = "1.12", features = ["postgres", "encryption", "aws-kms", "gcp-kms", "vault-kms", "tracing"] }

# Minimal installation
hammerwork = { version = "1.12", features = ["postgres"], default-features = false }

Feature Flags: postgres, mysql, metrics (default), alerting (default), encryption (optional), aws-kms (optional), gcp-kms (optional), vault-kms (optional), tracing (optional), test (for TestQueue)

Web Dashboard (Optional)

# Install the web dashboard
cargo install hammerwork-web --features postgres

# Or add to your project
[dependencies]
hammerwork-web = { version = "1.12", features = ["postgres"] }

Start the dashboard:

hammerwork-web --database-url postgresql://localhost/hammerwork
# Dashboard available at http://localhost:8080

Quick Start

See the Quick Start Guide for complete examples with PostgreSQL and MySQL.

Documentation

Basic Example

use hammerwork::{Job, Worker, WorkerPool, JobQueue, RetryStrategy, queue::DatabaseQueue};
use serde_json::json;
use std::{sync::Arc, time::Duration};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Setup database and queue (migrations should already be run)
    let pool = sqlx::PgPool::connect("postgresql://localhost/mydb").await?;
    let queue = Arc::new(JobQueue::new(pool));

    // Create job handler
    let handler = Arc::new(|job: Job| {
        Box::pin(async move {
            println!("Processing: {:?}", job.payload);
            Ok(())
        })
    });

    // Start worker with retry strategy
    let worker = Worker::new(queue.clone(), "default".to_string(), handler)
        .with_default_retry_strategy(RetryStrategy::exponential(
            Duration::from_secs(1), 2.0, Some(Duration::from_secs(60))
        ));
    let mut pool = WorkerPool::new();
    pool.add_worker(worker);

    // Enqueue jobs with advanced retry strategies
    let job = Job::new("default".to_string(), json!({"task": "send_email"}))
        .with_exponential_backoff(
            Duration::from_secs(2),
            2.0,
            Duration::from_secs(10 * 60)
        );
    queue.enqueue(job).await?;

    pool.start().await
}

Workflow Example

Create complex data processing pipelines with job dependencies:

use hammerwork::{Job, JobGroup, FailurePolicy, queue::DatabaseQueue};
use serde_json::json;

// Sequential pipeline: job1 → job2 → job3
let job1 = Job::new("process_data".to_string(), json!({"input": "raw_data.csv"}));
let job2 = Job::new("transform_data".to_string(), json!({"format": "parquet"}))
    .depends_on(&job1.id);
let job3 = Job::new("export_data".to_string(), json!({"destination": "s3://bucket/"}))
    .depends_on(&job2.id);

// Parallel processing with synchronization barrier
let parallel_jobs = vec![
    Job::new("process_region_a".to_string(), json!({"region": "us-east"})),
    Job::new("process_region_b".to_string(), json!({"region": "us-west"})),
    Job::new("process_region_c".to_string(), json!({"region": "eu-west"})),
];
let final_job = Job::new("combine_results".to_string(), json!({"output": "summary.json"}));

let workflow = JobGroup::new("data_pipeline")
    .add_parallel_jobs(parallel_jobs)  // These run concurrently
    .then(final_job)                   // This waits for all parallel jobs
    .with_failure_policy(FailurePolicy::ContinueOnFailure);

// Enqueue the entire workflow
queue.enqueue_workflow(workflow).await?;

Jobs will only execute when their dependencies are satisfied, enabling sophisticated data processing pipelines and business workflows.

Tracing Example

Enable comprehensive distributed tracing with OpenTelemetry integration:

use hammerwork::{Job, Worker, tracing::{TracingConfig, init_tracing}, queue::DatabaseQueue};
use serde_json::json;
use std::sync::Arc;

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Initialize distributed tracing
    let tracing_config = TracingConfig::new()
        .with_service_name("job-processor")
        .with_service_version("1.0.0")
        .with_environment("production")
        .with_otlp_endpoint("http://jaeger:4317");
    
    init_tracing(tracing_config).await?;

    let pool = sqlx::PgPool::connect("postgresql://localhost/hammerwork").await?;
    let queue = Arc::new(JobQueue::new(pool));

    // Create traced jobs with correlation for business workflows
    let trace_id = "trace-12345";
    let correlation_id = "order-67890";
    
    let payment_job = Job::new("payment_queue".to_string(), json!({
        "order_id": "67890",
        "amount": 299.99
    }))
    .with_trace_id(trace_id)
    .with_correlation_id(correlation_id);
    
    let email_job = Job::new("email_queue".to_string(), json!({
        "order_id": "67890", 
        "template": "order_confirmation"
    }))
    .with_trace_id(trace_id)
    .with_correlation_id(correlation_id)
    .depends_on(&payment_job.id);

    // Worker with lifecycle event hooks for observability
    let handler = Arc::new(|job: Job| Box::pin(async move {
        println!("Processing: {:?}", job.payload);
        // Your business logic here
        Ok(())
    }));

    let worker = Worker::new(queue.clone(), "payment_queue".to_string(), handler)
        .on_job_start(|event| {
            println!("Job {} started (trace: {}, correlation: {})", 
                event.job.id,
                event.job.trace_id.unwrap_or_default(),
                event.job.correlation_id.unwrap_or_default());
        })
        .on_job_complete(|event| {
            println!("Job {} completed in {:?}", 
                event.job.id, 
                event.duration.unwrap_or_default());
        })
        .on_job_fail(|event| {
            eprintln!("Job {} failed: {}", 
                event.job.id, 
                event.error.unwrap_or_default());
        });

    // Enqueue jobs - they'll be automatically traced
    queue.enqueue(payment_job).await?;
    queue.enqueue(email_job).await?;

    Ok(())
}

This enables end-to-end tracing across your entire job processing pipeline with automatic span creation, correlation tracking, and integration with observability platforms like Jaeger, Zipkin, or DataDog.

Testing Example

Test your job processing logic with the in-memory TestQueue framework:

use hammerwork::queue::test::{TestQueue, MockClock};
use hammerwork::{Job, JobStatus, queue::DatabaseQueue};
use serde_json::json;
use chrono::Duration;

#[tokio::test]
async fn test_delayed_job_processing() {
    let clock = MockClock::new();
    let queue = TestQueue::with_clock(clock.clone());
    
    // Schedule a job for 1 hour from now
    let future_time = clock.now() + Duration::hours(1);
    let job = Job::new("test_queue".to_string(), json!({"task": "delayed_task"}))
        .with_scheduled_at(future_time);
    
    let job_id = queue.enqueue(job).await.unwrap();
    
    // Job shouldn't be available immediately
    assert!(queue.dequeue("test_queue").await.unwrap().is_none());
    
    // Advance time past scheduled time
    clock.advance(Duration::hours(2));
    
    // Now job should be available for processing
    let dequeued = queue.dequeue("test_queue").await.unwrap().unwrap();
    assert_eq!(dequeued.id, job_id);
    
    // Complete the job
    queue.complete_job(job_id).await.unwrap();
    
    // Verify completion
    let completed = queue.get_job(job_id).await.unwrap().unwrap();
    assert_eq!(completed.status, JobStatus::Completed);
}

The TestQueue provides complete compatibility with the DatabaseQueue trait while offering deterministic time control through MockClock, making it perfect for testing complex workflows, retry logic, and time-dependent job processing.

Job Archiving Example

Configure automatic job archival for compliance and database performance:

use hammerwork::{
    archive::{ArchivalPolicy, ArchivalConfig, ArchivalReason},
    queue::DatabaseQueue
};
use chrono::Duration;

// Configure archival policy
let policy = ArchivalPolicy::new()
    .archive_completed_after(Duration::days(7))      // Archive completed jobs after 7 days
    .archive_failed_after(Duration::days(30))        // Keep failed jobs for 30 days
    .archive_dead_after(Duration::days(14))         // Archive dead jobs after 14 days
    .archive_timed_out_after(Duration::days(21))    // Archive timed out jobs after 21 days
    .purge_archived_after(Duration::days(365))      // Purge archived jobs after 1 year
    .compress_archived_payloads(true)               // Enable gzip compression
    .with_batch_size(1000)                          // Process up to 1000 jobs per batch
    .enabled(true);

let config = ArchivalConfig::new()
    .with_compression_level(6)                      // Balanced compression
    .with_compression_verification(true);           // Verify compression integrity

// Run archival (typically scheduled as a cron job)
let stats = queue.archive_jobs(
    Some("payment_queue"),                          // Optional: archive specific queue
    &policy,
    &config,
    ArchivalReason::Automatic,                      // Automatic, Manual, Compliance, Maintenance
    Some("scheduler")                               // Who initiated the archival
).await?;

println!("Archived {} jobs, saved {} bytes (compression ratio: {:.2})",
    stats.jobs_archived,
    stats.bytes_archived,
    stats.compression_ratio
);

// Restore an archived job if needed
let job = queue.restore_archived_job(job_id).await?;

// List archived jobs with filtering
let archived_jobs = queue.list_archived_jobs(
    Some("payment_queue"),     // Optional queue filter
    Some(100),                // Limit
    Some(0)                   // Offset for pagination
).await?;

// Purge old archived jobs for GDPR compliance
let purged = queue.purge_archived_jobs(
    Utc::now() - Duration::days(730)  // Delete jobs archived over 2 years ago
).await?;

Archival moves completed/failed jobs to a separate table with compressed payloads, reducing the main table size while maintaining compliance requirements.

Job Encryption Example

Protect sensitive job payloads with enterprise-grade encryption:

use hammerwork::{
    Job, JobQueue, 
    encryption::{EncryptionConfig, EncryptionAlgorithm, KeySource, RetentionPolicy},
    queue::DatabaseQueue
};
use serde_json::json;
use std::{sync::Arc, time::Duration};

#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
    // Setup database and queue with encryption
    let pool = sqlx::PgPool::connect("postgresql://localhost/mydb").await?;
    let queue = Arc::new(JobQueue::new(pool));

    // Configure encryption for PII protection
    let encryption_config = EncryptionConfig::new(EncryptionAlgorithm::AES256GCM)
        .with_key_source(KeySource::Environment("HAMMERWORK_ENCRYPTION_KEY".to_string()))
        // Or use AWS KMS for enterprise key management:
        // .with_key_source(KeySource::External("aws://alias/hammerwork-key?region=us-east-1".to_string()))
        // Or use Google Cloud KMS for enterprise key management:
        // .with_key_source(KeySource::External("gcp://projects/PROJECT/locations/LOCATION/keyRings/RING/cryptoKeys/KEY".to_string()))
        // Or use HashiCorp Vault KMS for enterprise key management:
        // .with_key_source(KeySource::External("vault://secret/hammerwork/encryption-key".to_string()))
        .with_key_rotation_enabled(true);

    // Create job with encrypted PII fields
    let payment_job = Job::new("payment_processing".to_string(), json!({
        "user_id": "user123",
        "credit_card": "4111-1111-1111-1111",  // PII - will be encrypted
        "ssn": "123-45-6789",                  // PII - will be encrypted  
        "amount": 299.99,
        "merchant": "Online Store"
    }))
    .with_encryption(encryption_config)
    .with_pii_fields(vec!["credit_card", "ssn"])  // Specify which fields contain PII
    .with_retention_policy(RetentionPolicy::DeleteAfter(Duration::from_secs(7 * 24 * 60 * 60))); // 7 days

    // Enqueue encrypted job
    queue.enqueue(payment_job).await?;

    // Job handler processes decrypted payload transparently
    let handler = Arc::new(|job: Job| {
        Box::pin(async move {
            // Payload is automatically decrypted before reaching handler
            println!("Processing payment: {:?}", job.payload);
            
            // PII fields are available in plain text for processing
            let credit_card = job.payload["credit_card"].as_str().unwrap();
            let ssn = job.payload["ssn"].as_str().unwrap();
            
            // Your business logic here - encryption is transparent
            Ok(())
        })
    });

    Ok(())
}

Key features:

  • Automatic Encryption: PII fields are automatically encrypted when jobs are enqueued
  • Transparent Decryption: Job handlers receive decrypted payloads transparently
  • Field-Level Protection: Only specified PII fields are encrypted, keeping metadata accessible
  • Retention Policies: Automatic deletion of encrypted data after compliance periods
  • Key Management: Enterprise key rotation, audit trails, and external KMS integration

Web Dashboard

Start the real-time web dashboard for monitoring and managing your job queues:

# Start with PostgreSQL
hammerwork-web --database-url postgresql://localhost/hammerwork

# Start with authentication
hammerwork-web \
  --database-url postgresql://localhost/hammerwork \
  --auth \
  --username admin \
  --password mypassword

# Start with custom configuration
hammerwork-web --config dashboard.toml

The dashboard provides:

  • Real-time Monitoring: Live queue statistics, job counts, and throughput metrics
  • Job Management: View, retry, cancel, and inspect jobs with detailed payload information
  • Queue Administration: Clear queues, monitor performance, and manage priorities
  • Interactive Charts: Throughput graphs and job status distributions
  • WebSocket Updates: Real-time updates without page refresh
  • REST API: Complete programmatic access to all dashboard features
  • Authentication: Secure access with bcrypt password hashing and rate limiting

Access the dashboard at http://localhost:8080 after starting the server.

Database Setup

Using Migrations (Recommended)

Hammerwork provides a migration system for progressive schema updates:

# Build the migration tool
cargo build --bin cargo-hammerwork --features postgres

# Run migrations
cargo hammerwork migrate --database-url postgresql://localhost/hammerwork

# Check migration status
cargo hammerwork status --database-url postgresql://localhost/hammerwork

# Start the web dashboard after migrations
hammerwork-web --database-url postgresql://localhost/hammerwork

Application Usage

Once migrations are run, your application can use the queue directly:

// In your application - no setup needed, just use the queue
let pool = sqlx::PgPool::connect("postgresql://localhost/hammerwork").await?;
let queue = Arc::new(JobQueue::new(pool));

// Start enqueuing jobs immediately
let job = Job::new("default".to_string(), json!({"task": "send_email"}));
queue.enqueue(job).await?;

Database Schema

Hammerwork uses optimized tables with comprehensive indexing:

  • hammerwork_jobs - Main job table with priorities, timeouts, cron scheduling, retry strategies, result storage, distributed tracing, and encryption fields
  • hammerwork_jobs_archive - Archive table for completed/failed jobs with compressed payloads (v1.3.0+)
  • hammerwork_encryption_keys - Encrypted key storage with master key encryption and audit trails (v1.7.0+)
  • hammerwork_batches - Batch metadata and tracking (v0.7.0+)
  • hammerwork_job_results - Job result storage with TTL and expiration (v0.8.0+)
  • hammerwork_migrations - Migration tracking for schema evolution

The schema supports all features including job prioritization, advanced retry strategies, timeouts, cron scheduling, batch processing, result storage with TTL, distributed tracing with trace/correlation IDs, worker autoscaling, job archival with compression, job encryption with PII protection, enterprise key management, and comprehensive lifecycle tracking. See Database Migrations for details.

Development

Comprehensive testing with Docker containers:

# Start databases and run all tests
make integration-all

# Run specific database tests
make integration-postgres
make integration-mysql

See docs/integration-testing.md for complete development setup.

Examples

Working examples in examples/:

  • postgres_example.rs - PostgreSQL with timeouts and statistics
  • mysql_example.rs - MySQL with workers and priorities
  • cron_example.rs - Cron scheduling with timezones
  • priority_example.rs - Priority system demonstration
  • batch_example.rs - Bulk job enqueuing and processing
  • worker_batch_example.rs - Worker batch processing features
  • retry_strategies.rs - Advanced retry patterns with exponential backoff and jitter
  • result_storage_example.rs - Job result storage and retrieval
  • autoscaling_example.rs - Dynamic worker pool scaling based on queue depth
  • tracing_example.rs - Distributed tracing with OpenTelemetry and event hooks
  • encryption_example.rs - Job encryption, PII protection, and key management
  • aws_kms_encryption_example.rs - AWS KMS integration for enterprise key management
  • gcp_kms_encryption_example.rs - Google Cloud KMS integration for enterprise key management
  • vault_kms_encryption_example.rs - HashiCorp Vault KMS integration for enterprise key management
  • key_management_example.rs - Enterprise key lifecycle and audit trails
cargo run --example postgres_example --features postgres
cargo run --example vault_kms_encryption_example --features vault-kms

Contributing

  1. Fork the repository and create a feature branch
  2. Run tests: make integration-all
  3. Ensure code follows Rust standards (cargo fmt, cargo clippy)
  4. Submit a pull request with tests and documentation

License

This project is licensed under the MIT License - see the LICENSE-MIT file for details.

About

A high-performance, database-driven job queue for Rust with Postgres and MySQL support

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •