This following packages must be installed
- python
- poetry
- git
poetry
configuration, add environment variablePOETRY_VIRTUALENVS_IN_PROJECT=true
vscode
configuration, add environment variablePYTHON_VENV_LOC
- on windows:
PYTHON_VENV_LOC=.venv\\bin\\python.exe
- on linux:
PYTHON_VENV_LOC=.venv/bin/python
- on windows:
git
configuration
git config --global user.name 'your name'
git config --global user.email 'your email'
- First setup
poetry install
- Then
poetry shell
Manuel steps to generate and publish the package to TestPyPI with poetry, documentation from packaging.python
Build the package, generate distribution archives
poetry build
Add Test PyPI as an alternate package repository
poetry config repositories.testpypi https://test.pypi.org/legacy/
Upload/publish package/distribution archive to TestPyPI (a separate instance of the Python Package Index)
poetry publish -r testpypi
pip install --index-url https://test.pypi.org/simple/ energy-study
or
pip3 install --index-url https://test.pypi.org/simple/ energy-study
curl -X POST -H "content-type:application/json" -d '{"swaggerUrl":"https://petstore.swagger.io/v2/swagger.json"}' https://generator.swagger.io/api/gen/clients/python
you can POST to https://generator.swagger.io/api/gen/clients/{language} with the following HTTP body
{
"options": {
"packageName": "energ_study"
},
"spec": {
}
}
https://swagger.io/tools/swagger-codegen/ Online generator for api client
curl -X POST -H "content-type:application/json" -d '{"swaggerUrl":"https://petstore.swagger.io/v2/swagger.json"}' https://generator.swagger.io/api/gen/clients/ruby
https://generator.swagger.io/#/clients/generateClient
https://data.rte-france.com/catalog/consumption
Il est conseillé de faire un appel par heure à ce service et de ne pas dépasser une période de 155 jours par appel.
The residuals are the rescaled one-step prediction errors $$ \hat{W_t} = (X_t - \hat{X_t}) / \sqrt{r_{t-1}} $$
To check the appropriateness of the model we therefore examine the residual series
-
Plot
-
QQ-Plot (normal)
-
QQ-Plot (t-distr)
-
Histogram
-
ACF/PACF
-
ACF Abs vals/Squares
-
Tests of randomness
-
distribution
-
descriptive statistics: mean, median, std, ...
-
ACF and PACF
-
stationarity ?
Données de modèle de prévision d'ensemble arpege
donneespubliques.meteofrance.fr
{
"url" : "https://api.ecmwf.int/v1",
"key" : "XXX",
"email" : "XXX"
}
https://confluence.ecmwf.int/display/WEBAPI/Access+ECMWF+Public+Datasets
See Public Datasets on https://apps.ecmwf.int/datasets/
pip install ecmwf-api-client
sudo apt -y install libgeos-dev