Skip to content

BlackHC/neural_net_checklist

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

neural_net_checklist: A Codified Recipe for Training Neural Networks

This repository implements a set of diagnostic assertions based on Andrei Karpathy's blog post "A Recipe for Training Neural Networks". Instead of a manual checklist, we provide programmatic checks to diagnose and debug neural networks efficiently.

Why This Exists

Training neural networks can be tricky. This toolkit saves you time by automating common diagnostic steps, allowing you to focus on the interesting parts of your model development.

Example Output (Causal Transformer)

Batteries included:

from neural_net_checklist import torch_diagnostics

torch_diagnostics.assert_all_for_causal_llm_cross_entropy_loss(
    lambda: CausalTransformer(vocab_size),
    dataloader,
    embedding_layer_name="embedding",
    vocab_size=vocab_size,
    device="cpu",
)

Output:

🔍 Checking all conditions for a causal LLM model with cross-entropy loss...
🔍 Checking loss at initialization...
Loss at initialization (4.2921) is within 75.0% of expected loss (4.0775)
✅ Loss at initialization is within the expected range.
🔍 Checking calibration at initialization...
Model is well-calibrated at initialization. Mean deviation: 0.00786806270480156
✅ Model is well-calibrated at initialization.
🔍 Checking forward batch independence...
🔧 Replaced 10 norm layers with Identity: {'LayerNorm': {'transformer.layers.3.norm2', 'transformer.layers.2.norm1', 'transformer.layers.0.norm2', 'transformer.layers.4.norm2', 'transformer.layers.0.norm1', 'transformer.layers.2.norm2', 'transformer.layers.1.norm2', 'transformer.layers.4.norm1', 'transformer.layers.1.norm1', 'transformer.layers.3.norm1'}}
✅ Forward batch independence verified.
🔍 Checking forward causal property...
🔧 Replaced 10 norm layers with Identity: {'LayerNorm': {'transformer.layers.3.norm2', 'transformer.layers.2.norm1', 'transformer.layers.0.norm2', 'transformer.layers.4.norm2', 'transformer.layers.0.norm1', 'transformer.layers.2.norm2', 'transformer.layers.1.norm2', 'transformer.layers.4.norm1', 'transformer.layers.1.norm1', 'transformer.layers.3.norm1'}}
✅ Causal independence verified.
🔍 Checking non-zero gradients...
✅ All gradients are non-zero.
🔍 Checking backward batch independence...
🔧 Replaced 10 norm layers with Identity: {'LayerNorm': {'transformer.layers.3.norm2', 'transformer.layers.2.norm1', 'transformer.layers.0.norm2', 'transformer.layers.4.norm2', 'transformer.layers.0.norm1', 'transformer.layers.2.norm2', 'transformer.layers.1.norm2', 'transformer.layers.4.norm1', 'transformer.layers.1.norm1', 'transformer.layers.3.norm1'}}
✅ Backward pass is batch independent.
🔍 Checking backward causal property...
🔧 Replaced 10 norm layers with Identity: {'LayerNorm': {'transformer.layers.3.norm2', 'transformer.layers.2.norm1', 'transformer.layers.0.norm2', 'transformer.layers.4.norm2', 'transformer.layers.0.norm1', 'transformer.layers.2.norm2', 'transformer.layers.1.norm2', 'transformer.layers.4.norm1', 'transformer.layers.1.norm1', 'transformer.layers.3.norm1'}}
✅ Backward pass exhibits causal independence.
🔍 Checking input independence baseline worse...
Loss: 3.125023:   7%|▋         | 9/128 [00:01<00:24,  4.89it/s]
Loss: 2.736129:   7%|▋         | 9/128 [00:02<00:26,  4.48it/s]
Regular loss: 2.736128568649292
Input independent loss: 3.1189355850219727
✅ Input independent baseline is worse.
🔍 Overfitting to the batch...
Loss: 0.099780:   0%|          | 87/65536 [00:07<1:39:13, 10.99it/s]Loss (0.09978045523166656) below threshold (0.1) at step 87.
✅ Model can overfit to batch.
✅ All conditions for a causal LLM model with cross-entropy loss verified.

See examples/causal_transformer.py for a complete example. (Examples for ResNet on CIFAR10 and LeNet on MNIST are also included.)

What's Included

We've implemented the following checks:

  1. Verify loss @ init (for balanced classification tasks)

    assert_balanced_classification_cross_entropy_loss_at_init
  2. Init well (for balanced classification tasks)

    assert_balanced_classification_cross_entropy_loss_at_init
  3. Non-zero gradients

    assert_non_zero_gradients
  4. Batch independence

    • Forward pass (memory-efficient, but note: batchnorm breaks this naturally)
      assert_batch_independence_forward
    • Backward pass (uses more memory, checks gradients)
      assert_batch_independence_backward
  5. Overfit one batch

    assert_overfit_one_batch
  6. Visualize just before the net

    patch_module_raise_inputs

Quick Start

To run all assertions:

  • For classification tasks (e.g., computer vision):

    assert_all_for_classification_cross_entropy_loss
  • For causal language models:

    assert_all_for_llm_cross_entropy_loss

Installation

pip install neural_net_checklist

Usage Example

import neural_net_checklist.torch_diagnostics as torch_diagnostics

# Assume you have a model and a DataLoader
model = YourModel()
train_loader = YourDataLoader()

# Run all checks
torch_diagnostics.assert_all_for_classification_cross_entropy_loss(model, train_loader)

See the code and docstrings for more details.

Contributing

Contributions are welcome! If you have ideas for additional checks or improvements, please open an issue or submit a pull request.

License

This project is licensed under the MIT License - see the LICENSE file for details.


Happy debugging! Remember, neural nets can be finicky, but with the right tools, we can tame them. 🧠🔧

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages