Skip to content

Implementation of RipsNet (Thibault de Surrel, Felix Hensel, Mathieu Carrière, Théo Lacombe, Yuichi Ike, Hiroaki Kurihara, Marc Glisse, Frédéric Chazal Proceedings of Topological, Algebraic, and Geometric Learning Workshops 2022, PMLR 196:96-106, 2022.) in Pytorch.

License

Notifications You must be signed in to change notification settings

BioE-KimLab/ripsnet-torch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ripsnet-torch

DOI Implementation of RipsNet (Thibault de Surrel, Felix Hensel, Mathieu Carrière, Théo Lacombe, Yuichi Ike, Hiroaki Kurihara, Marc Glisse, Frédéric Chazal Proceedings of Topological, Algebraic, and Geometric Learning Workshops 2022, PMLR 196:96-106, 2022.) in Pytorch.

DeepSets implementation adapted from https://colab.research.google.com/drive/1k2AfI6kPJmXK-gN6mi6_EegJQd4SybDz?usp=sharing#scrollTo=Rwrpnh4XdnrX and https://colab.research.google.com/github/ninarina12/phononDoS_tutorial/blob/main/phononDoS_colab.ipynb#scrollTo=_v7BmDsQgutC

About

Implementation of RipsNet (Thibault de Surrel, Felix Hensel, Mathieu Carrière, Théo Lacombe, Yuichi Ike, Hiroaki Kurihara, Marc Glisse, Frédéric Chazal Proceedings of Topological, Algebraic, and Geometric Learning Workshops 2022, PMLR 196:96-106, 2022.) in Pytorch.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 99.5%
  • Python 0.5%