Skip to content

Commit

Permalink
fixed inconsistent ddp entrance and update pytorch version
Browse files Browse the repository at this point in the history
  • Loading branch information
haoxiangsnr committed Nov 1, 2021
1 parent 73058ac commit 213df1b
Show file tree
Hide file tree
Showing 3 changed files with 17 additions and 18 deletions.
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,13 +1,13 @@
# FullSubNet

![Platform](https://img.shields.io/badge/Platform-macos%20%7C%20linux-lightgrey)
![Platform](https://img.shields.io/badge/Platform-linux-lightgrey)
![Python version](https://img.shields.io/badge/Python-%3E%3D3.8.0-orange)
![Pytorch Version](https://img.shields.io/badge/PyTorch-%3E%3D1.7-brightgreen)
![Pytorch Version](https://img.shields.io/badge/PyTorch-%3E%3D1.10-brightgreen)
![GitHub repo size](https://img.shields.io/github/repo-size/haoxiangsnr/FullSubNet)

This Git repository for the official PyTorch implementation
of ["FullSubNet: A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement"](https://arxiv.org/abs/2010.15508), accepted
to ICASSP 2021.
to ICASSP 2021.

:bulb:[[Demo\]](https://www.haoxiangsnr.com/demo/fullsubnet/) | :page_facing_up:[[PDF\]](https://arxiv.org/abs/2010.15508) | :floppy_disk:[[Model Checkpoint\]](https://github.com/haoxiangsnr/FullSubNet/releases)

Expand Down
16 changes: 8 additions & 8 deletions docs/getting_started.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,23 +16,23 @@ Git repository is the ICASSP 2021 Dataset. You need to check out the default bra

### Training

First, we need to enter a directory named after the dataset, such as `dns_interspeech_2020`. Then, we can call the default training configuration:
First, we need to enter a directory named after the dataset, such as `dns_interspeech_2020`. Then, we could call the default training configuration:

```shell
# enter a directory named after the dataset, such as dns_interspeech_2020
cd FullSubNet/recipes/dns_interspeech_2020

# Use a default config and two GPUs to train the FullSubNet model
CUDA_VISIABLE_DEVICES=0,1
python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=2 train.py -C fullsubnet/train.toml
CUDA_VISIBLE_DEVICES=0,1
torchrun --standalone --nnodes=1 --nproc_per_node=2 train.py -C fullsubnet/train.toml

# Use default config and one GPU to train the Fullband baseline model
CUDA_VISIABLE_DEVICES=0
python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=1 train.py -C fullband_baseline/train.toml
CUDA_VISIBLE_DEVICES=0
torchrun --standalone --nnodes=1 --nproc_per_node=1 train.py -C fullband_baseline/train.toml

# Resume the experiment using "-R" parameter
CUDA_VISIABLE_DEVICES=0,1
python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=2 train.py -C fullband_baseline/train.toml -R
CUDA_VISIBLE_DEVICES=0,1
torchrun --standalone --nnodes=1 --nproc_per_node=2 train.py -C fullband_baseline/train.toml -R
```

See more details in `FullSubNet/recipes/dns_interspeech_2020/train.py` and `FullSubNet/recipes/dns_interspeech_2020/**/train.toml`.
Expand Down Expand Up @@ -101,7 +101,7 @@ Check more details of inference parameters in `FullSubNet/recipes/dns_interspeec
Calculating metrics (SI_SDR, STOI, WB_PESQ, NB_PESQ, etc.) using the following command lines:

```shell
# Switching path
# Switch path
cd FullSubNet

# DNS-INTERSPEECH-2020
Expand Down
13 changes: 6 additions & 7 deletions docs/prerequisites.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Prerequisites

- Linux or macOS
- Linux-based system
- Anaconda or Miniconda
- NVIDIA GPU + CUDA CuDNN (CPU is **not** be supported)

Expand All @@ -9,7 +9,7 @@ The advantage of using conda instead of pip is that conda will ensure that you h

## Clone

Firstly, you need to clone this repository:
Firstly, clone this repository:

```shell
git clone https://github.com/haoxiangsnr/FullSubNet
Expand All @@ -22,19 +22,18 @@ Install Anaconda or Miniconda, and then install conda and pip packages:

```shell
# create a conda environment
conda create --name FullSubNet python=3.8
conda create --name FullSubNet python=3
conda activate FullSubNet

# install conda packages
# ensure python=3.8, cudatoolkit=10.2, pytorch=1.7.1, torchaudio=0.7
conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch
# ensure python=3.x, pytorch=1.10.x, torchaudio=0.10
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
conda install tensorboard joblib matplotlib

# install pip packages
# ensure librosa=0.8
pip install Cython
pip install librosa pesq pypesq pystoi tqdm toml mir_eval torch_complex rich

# (Optional) if you have "mp3" format audio in your dataset, you need to install ffmpeg.
# (Optional) if there are "mp3" format audio files in your dataset, you need to install ffmpeg.
conda install -c conda-forge ffmpeg
```

0 comments on commit 213df1b

Please sign in to comment.