Skip to content

Anderson-Wu/YOLOv7_for_tiny_object_detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Object Detection on UAV images(All the operation should be in code folder)

Group Member

  • R11922029 吳泓毅
  • R10922026 吳勝濬
  • R10922102 林正偉

Dataset Download

Link

Environment Setting

conda create -n yolov7 python=3.9
conda activate yolov7
pip install -r requirements.txt  

Folder Structure

You need to create datasets folder by yourself

|----code
|----datasets----DIP(extract below datasets folder)

Training

python train.py --data DIP.yaml --weights yolov7_training.pt --cfg ./cfg/training/<model>.yaml --img <img size> --epoch <epoch_num>  --freeze <freeze layers> --batch-size <batch_size>

<model>.yaml: choose model strucures which are put in cfg/training folder
<img size>: training size and validation size
<epoch_num>: training epoch num, 100 for img-size 640, 50 for img-size 1280
<freeze layers>: fixed backbone weights before assigned layer nums, 50 for fixed backbone, 52 for fixed backbone and neck, if you don't want fixed any weight, just don't use this argument. <batch_size>: choose batch size depend on GPU

Inference on Testing Dataset

Weights Download

Link

python detect.py --source ../data/ --weights <weights path>  --img <img size> 

<weights folder>: path to weights
<img size>: inference size 640 or 1280 depend on training size

The results on testing images are here

Acknowledgements

Expand

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published