Skip to content
Alexandro Palacios edited this page Mar 2, 2022 · 18 revisions

logo

Create a BaseNumber instance:

Let´s start creating our first BaseNumber. The constructor uses two arguments (last optional) to build the instance:

Argument Type Detail
number BaseNumber / String / Number / BigInt Required
base Number Optional
const dec = Base(10, 10);  // Base(number, base);

const hex = Base("f2", 16);

BaseNumber.js works with decimal base numbers by default, so you can omit the base argument:

const dec = Base(10);

Signed numbers

The library allows user to create signed numbers. Specify the sign in the first argument of the instance:

const dec = Base(-10);

const oct = Base("--++10", 8);  // it´s "10" in base 8

const hex = Base("-+10", 2);    // it´s "-10" in base 2

Scientific notation

BaseNumber.js also allows scientific notation within your numbers. You can init an instance this way:

const dec = Base(10e-2);  // equals to "0.1" in base 10

const oct = Base(10e+2, 8);  // equals to "1000" in base 8

const hex = Base("ff.e10e-2", 16);  // equals to "0.ffe10" in base 16

Notice that e- / e+ is referred to scientific notation. Omitting the sign (+ or -) may cause errors or unexpected results:

const hex1 = Base("ff.e10e-2", 16);  // equals to "0.ffe10" in base 16

const hex2 = Base("ff.e10e2", 16);   // equals to "ff.e10e2" in base 16, no scientific notation here

const dec = Base("10e2");   // Error, number doesn´t match base

valueOf()

Returns a String that may contain letters and numbers, where 0 is a signed number :

x = Base(-0);
y = Base(0);
z = Base("3a0", 16);

x.valueOf();              // "-0"
y.valueOf();              // "0"
z.valueOf();              // "3a0"
Base(Infinity).valueOf()  // "Infinity"
Base(NaN).valueOf()       // "NaN"

toString()

Same as valueOf() but 0 is not signed:

x = Base(-0);
y = Base(0);

x.toString();  // "0"
y.toString();  // "0"

toNumber()

Returns the number representation of the instance. If the instance is in base different than 10, the method would return the decimal representation of the instance

dec = Base(10); 
hex = Base("a", 16);
pi = Base("3.1415926535897932384626433832795028841"); 

dec.toNumber();   // returns 10
hex.toNumber();   // returns 10
pi.toNumber();    // returns 3.141592653589793

base()

Number base is saved as an integer:

dec = Base(10); 
hex = Base("f2", 16);

dec.base();   // 10
hex.base();   // 16

sign()

Returns a value representing the sign of the instance:

Sign Return
+ 1
- -1
+0 0
-0 -0
NaN NaN
x = Base("-abc", 16)
y = Base("NaN")
z = Base("le5k1p", 36)

x.sign()        // -1
y.sign()        // NaN
z.sign()        // 1
Base(0).sign()  // 0
Base(-0).sign() // -0

newValue()

The newValue method allows user to modify the value of an instance. It takes two parameters, second is optional, and returns the same BaseNumber instance modified:

Argument Type Detail
number BaseNumber / String / Number / BigInt Required
base Number Optional
dec.newValue(number[, base]);

The number argument can be either a String/Number or another BaseNumber instance. In case it´s a BaseNumber instance, base parameter would be equal to the argument's base. E.g:

dec.newValue(hex);  // base argument is by default hex.base()

// Now 'dec' is a copy of 'hex' instance (same value and same base)

In case number argument is a string/float variable, the base parameter would be equal to the instance base by default, unless you specify it:

dec.newValue(5);  // base argument is by default dec.base()

// New value is 5 in base 10

This method returns the updated instance:

const dec = Base(10);

dec.newValue(5).valueOf();  // returns "5" in base 10

dec.valueOf() // returns "5" in base 10

toBase()

BaseNumber.js has its own method to parse a number into a new base. It returns a new BaseNumber:

dec = Base(15);

dec.toBase(16).valueOf();  // returns "f" (15 in hexadecimal)

If base parameter is omitted, number would be parsed in base 10 by default.

toDec()

Similar to toBase(), returns a value parsed in decimal base. It does not modify the instance itself. It´s a way to improve code readlibility:

hex = Base("f", 16);
hex.toDec().valueOf();   // returns "15"

toHex()

dec = Base(15);
dec.toHex().valueOf();   // returns "f"

toOct()

dec = Base(10);
dec.toOct().valueOf();   // returns "12"

toBin()

dec = Base(10.0625);
dec.toBin().valueOf();       // returns "1010.0001"

trunc()

Returns a new BaseNumber only with the integer part, similar to Javascript native parseInt()

dec = Base(10.0625);
dec.trunc().valueOf();       // returns "10"

round()

It rounds a number according to the precision passed as an argument, rounding up or down depending the number (and user parameters). The method returns a new instance with decimals rounded:

Argument Type Detail
precision Number Required
exclusive Boolean Optional
dec.round(precision[, exclusive]);

precision argument must be higher than 0 to avoid errors. If precision arg. is omitted, it would be 1 by default. exclusive argument allows user to decide how to round the middle number between 0 and the base. E.g: suppose a base 9 number:

The 4 digit is the middle number because base is an odd number (9), and the allowed symbols in the base are [0, 1, 2, 3, (4), 5, 6, 7, 8].

x = Base(10.04, 9);

// by default, exclusive is false, so the middle number would be round up
x.round(1).valueOf();     // returns "10.1"

// exclusive is true, so the middle number would be round down
x.round(1, true).valueOf();     // returns "10"

toFixed()

Argument Type Detail
precision Number Required
exclusive Boolean Optional

Returns a String containing the number with precision decimals.

dec.toFixed(precision[, exclusive]);

precision argument must be higher or equal to 0 to avoid errors. If precision arg. is omitted, it would returns the same as valueOf(). exclusive argument allows user to decide how to round the middle number between 0 and the base, see round() for more info about this parameter.

x = Base("4.5394")

x.toFixed();              // '4.5394'
x.toFixed(10);            // '4.5394000000'
x.toFixed(2);             // '4.54'

toPrecision()

Argument Type Detail
precision Number Required
exclusive Boolean Optional

Returns a String containing the number rounded with precision digits.

dec.toPrecision(precision[, exclusive]);

precision argument must be higher than 0 to avoid errors. If precision arg. is omitted, it would returns the same as valueOf(). If precision is less than the number of digits necessary to represent the integer part of the value in normal notation, then exponential notation is used. exclusive argument allows user to decide how to round the middle number between 0 and the base, see round() for more info about this parameter.

x = Base("4765456.5394")

x.toPrecision();              // '4765456.5394'
x.toPrecision(15);             // '4765456.53940000'
x.toPrecision(2);             // '4.8 e+6'

toSignificantDigits() / toSD()

Argument Type Detail
precision Number Required
exclusive Boolean Optional

Returns a new BaseNumber whose value is the value of this instance rounded to precision significant digits.

dec.toSignificantDigits(precision[, exclusive]);

precision argument must be higher than 0 to avoid errors. If precision arg. is omitted, it would returns the same as valueOf(). exclusive argument allows user to decide how to round the middle number between 0 and the base, see round() for more info about this parameter.

dec = Base(9876.54321)

dec.toSignificantDigits()                          // '9876.54321'
dec.toSignificantDigits(6)                         // '9876.54'
dec.toSD(2)                                        // '9900'

abs()

Returns a new BaseNumber whose value is the absolute value the instance.

dec = Base(-99);
dec.abs().valueOf()       // '99'

ceil()

Returns a new BaseNumber whose value is the value of the instance rounded to a whole number in the direction of positive Infinity.

x = Base(1.3)
x.ceil().valueOf()        // '2'

y = Base(-1.8)
y.ceil().valueOf()        // '-1'

z = Base("7a.2", 16)
z.ceil().valueOf()        // '7b'

floor()

Returns a new BaseNumber whose value is the value of the instance rounded to a whole number in the direction of negative Infinity.

x = Base(1.3)
x.ceil().valueOf()        // '1'

y = Base(-1.8)
y.ceil().valueOf()        // '-2'

z = Base("7a.2", 16)
z.ceil().valueOf()        // '79'

clamp()

Argument Type Detail
min BaseNumber Required
max BaseNumber Optional

Returns a new BaseNumber whose value is the value of this instance clamped to the range delineated by min and max.

x = Base(5)
min = Base(100)
max = Base(150)
x.clamp(min, max).valueOf()    // '100'

toExponential() / toExp()

Argument Type Detail
precision Number Optional

Returns a string representing the value of the instance rounded in exponential notation. Specify the number of digit after comma as an argument precision. By default precision is equal to the number of digits that are necessary to represent the number accurately.

dec = Base(9876.54321)
hex = Base("0.0f4ee21", 16)

dec.toExp()                          // '9.87654321 e+3'
dec.toExp(3)                         // '9.876 e+3'
dec.toExp(15)                        // '9.876543210000000 e+3'
hex.toExp()                          // 'f.4ee21 e-2'
hex.toExp(2)                         // 'f.4e e-2'

neg()

Returns a new BaseNumber with the opposite value of the instance:

x = Base(10)
y = Base("-32", 16)

x.neg().valueOf()          // '-10'
y.neg().valueOf()          // '32'

toIEEE754() Floating point representation

BaseNumber.js includes a method in which a number in any base can be transfromed to IEEE754 representation. Call the toIEEE754() method, it returns an object with three keys: exponent, mantissa and sign:

dec.toIEEE754([bits64]);

The bits64 argument allows to change the 32 bit floating point representation into a 64 bit representation. It´s by default false (32 bits).

const dec = Base(10.625);

dec.toIEEE754();

/* returns
{
   exponent: "10000010",
   mantissa: "01010100000000000000000",
   sign: "0"
} */

Math Operations

BaseNumber allows you to make math operations with normal variables or another BaseNumber instance. Although following examples show only integer numbers, all math operation are also available for float numbers.:

add()

The addition method takes two arguments, last optional:

Argument Type Detail
number BaseNumber / String / Number / BigInt Required
base Number Optional
dec.add(number[, base]);

The number argument can be either a string/number variable or another BaseNumber instance. In case it´s a BaseNumber instance, base parameter would be equal to the number instance's base. E.g:

dec = Base(10); 
hex = Base("ff", 16); 

dec.add(hex);  // base argument is by default hex.base()

dec.add(hex, 10);  // base argument is by default hex.base(), doesn´t matter if there is a base argument

In case number argument is a string/float variable, the base parameter would be 10 by default, unless you specify it:

dec.add(77);     // Base by default is 10 

dec.add(77, 8);  // Base is 8

Since the return value of the math functions is the modified instance, in order to take the value you need to add the valueOf() method at the end of the operation.

dec.add(77).valueOf()   // returns the new value

The remaining Math operations works exactly the same:

subtract()

dec = Base(10);

dec.subtract(5).valueOf();         // "5"
dec.subtract("f", 16).valueOf();   // "-5"

multiply()

dec = Base(10);
bin = Base(1010, 2)

dec.multiply(5).valueOf();     // "50"
dec.multiply(bin).valueOf();   // "100"

divide()

dec = Base(10);

dec.divide(5).valueOf();         // "2"
dec.divide("a", 16).valueOf();   // "1"

pow()

dec = Base(10);

dec.pow(2).valueOf();       // "100"
dec.pow(10, 2).valueOf();   // "100"

root()

dec = Base(10);

dec.root(2).valueOf();        // "3.16227766...."
dec.root(2.4).valueOf();      // "2.61015721...."
dec.root("10", 2).valueOf();  // "3.16227766...."

sqrt()

The same as root(2):

dec = Base(10);
dec.sqrt().valueOf();     // "3.16227766...."

cbrt()

The same as root(3):

dec = Base(125);
dec.cbrt().valueOf();     // "5"

exp()

Returns a new BaseNumber whose value is the base e (Euler's number, the base of the natural logarithm) exponential of the instance

x = Base(1)
x.exp().valueOf()         // '2.7182818284590452354'

log()

Returns a new BaseNumber whose value is the base x logarithm of the instance. If x is omitted, the base 10 logarithm of the instance will be returned.

x = Base(8)
x.log().valueOf();             // '0.903089....' 

y = Base("100", 16);
y.log(2).valueOf();             // '8' in base 16
y.log("10", 2).valueOf();       // '8' in base 16 

ln()

Returns a new BaseNumber whose value is the natural logarithm of the instance.

The ln() is the inverse of the exp() function.

x = Base(1)
x.ln().valueOf();             // '0' 

y = Base("7a.2", 16);
y.ln().valueOf();             // '4.ce176fb4d0...'

cos()

Returns a new BaseNumber whose value is the cosine of the instance. The operation would depend of the angle unit, see setAngle().

x = Base(90)
x.cos().valueOf();             // '0' 

y = Base(0);
y.cos().valueOf();             // '1'

sin()

Returns a new BaseNumber whose value is the sine of the instance. The operation would depend of the angle unit, see setAngle().

x = Base(90)
x.sin().valueOf();             // '1' 

y = Base(0);
y.sin().valueOf();             // '0'

tan()

Returns a new BaseNumber whose value is the tangent of the instance. The operation would depend of the angle unit, see setAngle().

x = Base(90)
x.tan().valueOf();             // 'Infinity' 

y = Base(0);
y.tan().valueOf();             // '0'

acos()

Returns a new BaseNumber whose value is the inverse cosine of the instance.

The argument range is [-1, 1], else returns NaN. The result would depend of the angle unit, see setAngle().

x = Base(1)
x.acos().valueOf();             // '0' 

y = Base(0);
y.acos().valueOf();             // '90'

asin()

Returns a new BaseNumber whose value is the inverse sine of the instance.

The argument range is [-1, 1], else returns NaN. The result would depend of the angle unit, see setAngle().

x = Base(1)
x.asin().valueOf();             // '90' 

y = Base(0);
y.asin().valueOf();             // '0'

atan()

Returns a new BaseNumber whose value is the inverse tangent of the instance.

The argument range is [-Infinity, Infinity]. The result would depend of the angle unit, see setAngle().

x = Base(1)
x.atan().valueOf();             // '45' 

y = Base(0);
y.atan().valueOf();             // '0'

fact()

Returns a new BaseNumber whose value is the factorial value of the instance. If the number is a float, it would be truncated to ist integer part

x = Base(3)
x.fact().valueOf();             // '6' 

y = Base(4.5345);
y.fact().valueOf();             // '24'

Chaining methods

BaseNumber.js allows user to chain math and other operators that return a BaseNumber. The list of operators that can be chained is the following:

E.g:

const dec = Base(10);

dec.add(5).subtract("f", 16).subtract(1).pow(2).toBin().toString();   // returns "1"

clone()

Returns a new BaseNumber instance, which is a copy of the original isntance:

const dec = Base(10);

const copy = dec.clone();

copy.toString()  // '10'

Comparing numbers

BaseNumber.js allows user to make comparisons between instances or variables. Although following examples show only integer numbers, all comparing operations are also available for float numbers:

equalTo()

Call the equalTo() method to check equality between values. It has two parameters, second is optional. It may return true or false.

dec.equalTo(number[, base]);

The number argument can be either a string/number variable or another BaseNumber instance. In case it´s a BaseNumber instance, base parameter would be equal to the number instance's base. E.g:

dec = Base(15); 
hex = Base("f", 16);

dec.equalTo(hex);   // returns true (base is hex.base())

hex.equalTo(dec);   // returns true (base is dec.base())

In case number argument is a string/number variable, the base parameter would be 10 by default, unless you specify it:

dec = Base(15); 
hex = Base("f", 16);

dec.equalTo(15);   // returns true (base is 10 by default)

hex.equalTo(15, 16);   // returns false (base is 16)

higherThan()

Call the higherThan() method to check if an element is higher than the argument number. It has two parameters, second is optional. It may return true or false.

dec.higherThan(number[, base]);

It works the same as the equalTo() method.

lowerThan()

Call the lowerThan() method to check if an element is lower than the argument number. It has two parameters, second is optional. It may return true or false.

dec.lowerThan(number[, base]);

It works the same as the equalTo() method.

isNeg()

Returns true if the number is negative, else returns false:

x = Base("-10")
y = Base(-0);
z = Base("100101", 2);

x.isNeg()   // true
y.isNeg()   // true
z.isNeg()   // false

isPos()

Returns true if the number is positive, else returns false:

const x = Base("-10")
const y = Base(-0);
const z = Base("100101", 2);

x.isPos()   // false
y.isPos()   // false
z.isPos()   // true

isInt()

Returns true if the number has not after-dot digits

x = Base("10.345")
y = Base(-0);
z = Base("100101", 2);

x.isInt()   // false
y.isInt()   // true
z.isInt()   // true

isFloat()

Returns true if the number has after-dot digits

x = Base("10.345")
y = Base(-0);
z = Base("100101", 2);

x.isFloat()   // true
y.isFloat()   // false
z.isFloat()   // false

isZero()

Returns true whether the instance is 0 or '-0`, else returns false:

x = Base("0")
y = Base(-0);
z = Base("100101", 2);

x.isZero()   // true
y.isZero()   // true
z.isZero()   // false

isNaN()

Returns true whether the instance is NaN, else returns false:

x = Base("NaN", 8)
y = Base(NaN);
z = Base("100101", 2);

x.isNaN()   // true
y.isNaN()   // true
z.isNaN()   // false

isFinite()

Returns true whether the instance is a finite value, else returns false. Non finite values are NaN, Infinity and -Infinity, see Special values for more information:

x = Base("NaN", 8)
y = Base(Infinity);
z = Base("100101", 2);

x.isFinite()   // false
y.isFinite()   // false
z.isFinite()   // true

isBase()

Returns true whether the instance value is in x base. If x is omitted, it would be 10 by default:

x = Base("NaN", 8)
y = Base(Infinity);
z = Base("100101", 2);

x.isBase(8)    // true
y.isBase()     // true (base 10)
z.isBase(16)   // false

Configuration of the library

setDecimals()

Set the number of decimals you want to reach in the operations. Take into account that more decimals may affect time execution of the library. The maximum recommend number of decimals is 1000 without losing precision. By default, the value is set as 20:

Base.setDecimals(50);

setAngle()

Set the angle unit for trigonometric operations. there are two possible units: "degrees" and "radians". By default, the value is set as "degrees":

Base.setAngle("degrees");

Base(90).cos().valueOf();        // 0

// or

Base.setAngle("radians");

Base.Pi.divide(2).cos().valueOf();        // 0

noConflict()

In case the Base variable was used by another variable before loading the library, this function allows user to revert the Base variable to the value it had before, and returns the BaseNumber constructor:

<script> let Base = 1 </script>
<script src='BaseNumber.js'></script>
<script>
  const x = Base("ff", 16)  
   
  const B = Base.noConflict()
   
  console.log( Base )     // 1
   
  const y = B(10)       
</script>

Constants

BaseNumber has 4 precision constants values that you can implement in your projects.You can reach up to 1025 digits of precision. Each constant is also a BaseNumber instance:

Base.Ln10.valueOf()      // '2.302585092.....'
Base.Ln2.valueOf()       // '0.693147180.....'
Base.Pi.valueOf()        // '3.141592653.....'
Base.e.valueOf()         // '2.718281828.....'

Special Values

±0, NaN and ±Infinity are valid BaseNumber values.

All values that are not NaN in range (-Infinity, +Infinity) are considered finite values.

x = Base("NaN", 8)
y = Base(Infinity);
z = Base("-0", 2);

x.isNaN()          // True
x.isFinite()       // False

y.equalTo(1 / 0)   // True
y.isFinite()       // False

z.isNeg()          // True
z.isFinite()       // True