Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add s_noise param to more samplers #12521

Merged
merged 5 commits into from
Aug 13, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion modules/launch_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -319,7 +319,7 @@ def prepare_environment():

stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf")
stable_diffusion_xl_commit_hash = os.environ.get('STABLE_DIFFUSION_XL_COMMIT_HASH', "5c10deee76adad0032b412294130090932317a87")
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "c9fe758757e022f05ca5a53fa8fac28889e4f1cf")
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "ab527a9a6d347f364e3d185ba6d714e22d80cb3c")
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")

Expand Down
8 changes: 4 additions & 4 deletions modules/sd_samplers_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -276,19 +276,19 @@ def initialize(self, p) -> dict:
s_tmax = getattr(opts, 's_tmax', p.s_tmax) or self.s_tmax # 0 = inf
s_noise = getattr(opts, 's_noise', p.s_noise)

if s_churn != self.s_churn:
if 's_churn' in extra_params_kwargs and s_churn != self.s_churn:
extra_params_kwargs['s_churn'] = s_churn
p.s_churn = s_churn
p.extra_generation_params['Sigma churn'] = s_churn
if s_tmin != self.s_tmin:
if 's_tmin' in extra_params_kwargs and s_tmin != self.s_tmin:
extra_params_kwargs['s_tmin'] = s_tmin
p.s_tmin = s_tmin
p.extra_generation_params['Sigma tmin'] = s_tmin
if s_tmax != self.s_tmax:
if 's_tmax' in extra_params_kwargs and s_tmax != self.s_tmax:
extra_params_kwargs['s_tmax'] = s_tmax
p.s_tmax = s_tmax
p.extra_generation_params['Sigma tmax'] = s_tmax
if s_noise != self.s_noise:
if 's_noise' in extra_params_kwargs and s_noise != self.s_noise:
extra_params_kwargs['s_noise'] = s_noise
p.s_noise = s_noise
p.extra_generation_params['Sigma noise'] = s_noise
Expand Down
9 changes: 9 additions & 0 deletions modules/sd_samplers_kdiffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,9 @@
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {"second_order": True, "brownian_noise": True}),
('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {"brownian_noise": True}),
('DPM++ 3M SDE', 'sample_dpmpp_3m_sde', ['k_dpmpp_3m_sde'], {'discard_next_to_last_sigma': True, "brownian_noise": True}),
('DPM++ 3M SDE Karras', 'sample_dpmpp_3m_sde', ['k_dpmpp_3m_sde_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "brownian_noise": True}),
('DPM++ 3M SDE Exponential', 'sample_dpmpp_3m_sde', ['k_dpmpp_3m_sde_exp'], {'scheduler': 'exponential', 'discard_next_to_last_sigma': True, "brownian_noise": True}),
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}),
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}),
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
Expand All @@ -42,6 +45,12 @@
'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
'sample_dpm_fast': ['s_noise'],
'sample_dpm_2_ancestral': ['s_noise'],
'sample_dpmpp_2s_ancestral': ['s_noise'],
'sample_dpmpp_sde': ['s_noise'],
'sample_dpmpp_2m_sde': ['s_noise'],
'sample_dpmpp_3m_sde': ['s_noise'],
}

k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion}
Expand Down
2 changes: 1 addition & 1 deletion modules/shared_options.py
Original file line number Diff line number Diff line change
Expand Up @@ -290,7 +290,7 @@
's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 100.0, "step": 0.01}, infotext='Sigma churn').info('amount of stochasticity; only applies to Euler, Heun, and DPM2'),
's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 10.0, "step": 0.01}, infotext='Sigma tmin').info('enable stochasticity; start value of the sigma range; only applies to Euler, Heun, and DPM2'),
's_tmax': OptionInfo(0.0, "sigma tmax", gr.Slider, {"minimum": 0.0, "maximum": 999.0, "step": 0.01}, infotext='Sigma tmax').info("0 = inf; end value of the sigma range; only applies to Euler, Heun, and DPM2"),
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.1, "step": 0.001}, infotext='Sigma noise').info('amount of additional noise to counteract loss of detail during sampling; only applies to Euler, Heun, and DPM2'),
's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.1, "step": 0.001}, infotext='Sigma noise').info('amount of additional noise to counteract loss of detail during sampling'),
'k_sched_type': OptionInfo("Automatic", "Scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}, infotext='Schedule type').info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"),
'sigma_min': OptionInfo(0.0, "sigma min", gr.Number, infotext='Schedule max sigma').info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"),
'sigma_max': OptionInfo(0.0, "sigma max", gr.Number, infotext='Schedule min sigma').info("0 = default (~14.6); maximum noise strength for k-diffusion noise scheduler"),
Expand Down