Skip to content

This project was our submission for Datathon 2021 @ UW-Madison, that makes use of Natural Language Processing (NLP) techniques for predicting suicidality of a person based on their social media posts, assessment forms, etc.

License

Notifications You must be signed in to change notification settings

AGoyal0512/Helping-Hands

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

47 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Helping Hands

What is Our Project About?

Suicide has been an intractable public health problem despite advances in the diagnosis and treatment of major mental disorders. Studies have shown that youth are likely to disclose suicidal thoughts and risk factors online and on social media. For example, a study examining emergency room assessments of suicidality found that adolescents were likely to report suicidal ideations not only verbally, but also via electronic means, which included posts on social networking sites, blog posts, instant messages, text messages, and emails.

Online expression of distress and suicidality may not be disclosed to physicians. It is unclear to what extent such online expressions are comparable to suicidal risk as elicited by physicians, and we were interested to lend out our Helping Hand to the youth and aid in recognizing the state of their mind. Here we develop a machine learning approach based on Reddit and Twitter data that predicts individual level future suicidal risk based on online social media data prior to any mention of suicidal thought.

How does our project work? And how will it impact society positively?

Our project is intended to be used primarily by doctors or therapists of the people who think they are undergoing mental stress or have been diagnosed/identified to be facing it. It has been found through mental health assessment tests that rather than taking objective answers like "Strongly Agree" or "Strongly Disagree" as input, a more general text response that asks about the participant's experiences or lives in general can be a better indicator of the mental state of the person's mind.

Our model takes in this text response, and predicts the possibility of whether the person has suicidal thoughts or not. With improvement with accuracy of the model (which currently stands at roughly 90%), we can increasingly trust its results and rely on it. This will help identify people who potentially carry suicidal thoughts and they can be helped out by their doctors or therapists.

Dataset

Since our dataset was large, we couldn't upload it to the repository due to space restrictions of 25 MB. So, we are uploading our data as a Google Drive link here.

Presentation

This is the link to our presentation -> Click Here!

About

This project was our submission for Datathon 2021 @ UW-Madison, that makes use of Natural Language Processing (NLP) techniques for predicting suicidality of a person based on their social media posts, assessment forms, etc.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 62.2%
  • HTML 30.0%
  • Python 7.8%