Skip to content

A recommendation engine for Works in the ACMI Collection using OpenAI vector embeddings.

License

Notifications You must be signed in to change notification settings

ACMILabs/works-embeddings

Repository files navigation

ACMI Works embeddings

A recommendation engine for Works in the ACMI Collection using OpenAI embeddings.

ACMI Works Embeddings CI

ACMI Works explorer frontendACMI Works explorer JSON server

Use

  • Connect to your ACMI VPN to access XOS private APIs (or point to your own API)
  • Copy the config.tmpl.env file to config.env
  • Set DEFAULT_TEMPLATE_JSON=false if you'd like to see HTML results rather than JSON results
  • Start your environment: make up
  • Click a work to get its nearest neighbours: http://localhost:8081/?json=false

Rebuild the Chroma database from your Embeddings API

  • Open config.env and set REBUILD=true
  • Delete the works_db directory if it exists
  • Start the app: make up

Create Embeddings

This prototype relies on having already created OpenAI Embeddings for your collection database.

Code we use to create Embeddings:

def create_embeddings(self, work):
    """
    Create an Embedding from a Work.
    """
    embedding = None
    work_features = [
        work.get_title_display(),
        work.description_override or work.description,
        work.work_type,
        work.creator_credit(),
        work.headline_credit(),
    ]
    work_features = list(filter(None, work_features))
    text_string = '\n'.join(work_features)
    embeddings_json = self.get_embeddings(text_string)
    if embeddings_json:
        embedding, _ = Embedding.objects.get_or_create(
            work=work,
            defaults={'data': embeddings_json},
        )
        embedding.data = embeddings_json
        embedding.save()
    return embedding

An example of the resulting JSON Embedding model from the XOS /embeddings/ API endpoint:

{
  "id": 6826,
  "data": {
    "data": [
      {
        "index": 0,
        "object": "embedding",
        "embedding": [
          0.010930221527814865, -0.01788223721086979, 0.009138058871030807,
          -0.0015344980638474226, 0.00028023053891956806, 0.015440168790519238,
          ...
        ]
      }
    ],
    "model": "text-embedding-ada-002-v2",
    "usage": { "total_tokens": 101, "prompt_tokens": 101 },
    "object": "list"
  },
  "work": 108230
}

TODO

  • Submodule Chroma vector database
  • Build Flask interface for prototyping
  • Load Chroma with XOS Works embeddings
  • Get recommendations based on an ACMI collection Work
  • Remove Chroma submodule if not necessary
  • Fix CORS issue loading images locally

About

A recommendation engine for Works in the ACMI Collection using OpenAI vector embeddings.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published