full_fred
is a Python interface to
FRED (Federal Reserve Economic Data) that
prioritizes user preference, flexibility, and speed. full_fred
's API translates to Python
every type of request FRED supports:
each query for Categories, Releases, Series, Sources, and Tags
found within FRED's web service has a method associated with it in full_fred
.
full_fred
minimizes redundant queries for the sake of users and FRED's servers.
After a request for data is made to FRED web service the retrieved data
is stored in a dictionary, accessible and fungible
pip install full-fred
full_fred
requires pytest
. Tests can be run with FRED_API_KEY
environment variable set and:
pytest
Queries to FRED web service require an API key. FRED has free API keys available with an account (also free)
You can tell full_fred
about an api key in 2 secure ways:
- fred.api_key_file can be set by passing it to the constructor
In [4]: from full_fred.fred import Fred
In [5]: fred = Fred('example_key.txt')
In [6]: fred.get_api_key_file()
Out[6]: 'example_key.txt'
This will set it too
In [3]: fred.set_api_key_file('example_key.txt')
Out[3]: True
If the file assigned to api_key_file
can't be found, full_fred
will say so immediately if api_key_file is set using
the surefire fred.set_api_key_file()
- FRED_API_KEY Environment Variable
full_fred
will automatically detect your api key if it's assigned to an environment variable named FRED_API_KEY
.
To check that FRED_API_KEY environment variable is detected, you can use
In [7]: fred.env_api_key_found()
Out[7]: True
full_fred
does not store your api key in an attribute for the sake of security: to send queries to FRED's databases, full_fred
uses the value of
FRED_API_KEY environment variable or the first line of fred.api_key_file
A pandas DataFrame stores observations when a request for data values is made
fred.get_series_df('GDPPOT')
realtime_start realtime_end date value
0 2021-04-03 2021-04-03 1949-01-01 2103.179936
1 2021-04-03 2021-04-03 1949-04-01 2130.7327210000003
2 2021-04-03 2021-04-03 1949-07-01 2159.4478710000003
3 2021-04-03 2021-04-03 1949-10-01 2186.907265
4 2021-04-03 2021-04-03 1950-01-01 2216.07306
.. ... ... ... ...
327 2021-04-03 2021-04-03 2030-10-01 23219.35
328 2021-04-03 2021-04-03 2031-01-01 23318.31
329 2021-04-03 2021-04-03 2031-04-01 23417.38
330 2021-04-03 2021-04-03 2031-07-01 23516.38
331 2021-04-03 2021-04-03 2031-10-01 23615.28
[332 rows x 4 columns]
The fetched data is stored in fred.series_stack (see Accessing fetched data section for more on retrieving queried data)
fred.series_stack['get_series_df']
{'realtime_start': '2021-04-03',
'realtime_end': '2021-04-03',
'observation_start': '1600-01-01',
'observation_end': '9999-12-31',
'units': 'lin',
'output_type': 1,
'file_type': 'json',
'order_by': 'observation_date',
'sort_order': 'asc',
'count': 332,
'offset': 0,
'limit': 100000,
'series_id': 'GDPPOT',
'df':
realtime_start realtime_end date value
0 2021-04-03 2021-04-03 1949-01-01 2103.179936
1 2021-04-03 2021-04-03 1949-04-01 2130.7327210000003
2 2021-04-03 2021-04-03 1949-07-01 2159.4478710000003
3 2021-04-03 2021-04-03 1949-10-01 2186.907265
4 2021-04-03 2021-04-03 1950-01-01 2216.07306
.. ... ... ... ...
327 2021-04-03 2021-04-03 2030-10-01 23219.35
328 2021-04-03 2021-04-03 2031-01-01 23318.31
329 2021-04-03 2021-04-03 2031-04-01 23417.38
330 2021-04-03 2021-04-03 2031-07-01 23516.38
331 2021-04-03 2021-04-03 2031-10-01 23615.28
[332 rows x 4 columns]}
To find a specific category_id or to search FRED categories from most general to most specific start with the root category 0. A search along the lines of the following can help to pinpoint different category_ids:
In [4]: fred.get_child_categories(0)
Out[4]:
{'categories': [{'id': 32991,
'name': 'Money, Banking, & Finance',
'parent_id': 0},
{'id': 10,
'name': 'Population, Employment, & Labor Markets',
'parent_id': 0},
{'id': 32992, 'name': 'National Accounts', 'parent_id': 0},
{'id': 1, 'name': 'Production & Business Activity', 'parent_id': 0},
{'id': 32455, 'name': 'Prices', 'parent_id': 0},
{'id': 32263, 'name': 'International Data', 'parent_id': 0},
{'id': 32213, 'name': 'Greenbook Projections', 'parent_id': 0},
{'id': 3008, 'name': 'U.S. Regional Data', 'parent_id': 0},
{'id': 33060, 'name': 'Academic Data', 'parent_id': 0}]}
In [5]: fred.category_stack['get_child_categories']
Out[5]:
{'categories': [{'id': 32991,
'name': 'Money, Banking, & Finance',
'parent_id': 0},
{'id': 10,
'name': 'Population, Employment, & Labor Markets',
'parent_id': 0},
{'id': 32992, 'name': 'National Accounts', 'parent_id': 0},
{'id': 1, 'name': 'Production & Business Activity', 'parent_id': 0},
{'id': 32455, 'name': 'Prices', 'parent_id': 0},
{'id': 32263, 'name': 'International Data', 'parent_id': 0},
{'id': 32213, 'name': 'Greenbook Projections', 'parent_id': 0},
{'id': 3008, 'name': 'U.S. Regional Data', 'parent_id': 0},
{'id': 33060, 'name': 'Academic Data', 'parent_id': 0}]}
The whole gamut of requests on FRED web service is implemented. The example below is one among many other methods in the API, listed in the next section
In [1]: from full_fred.fred import Fred
In [2]: fred = Fred()
In [3]: fred.get_series_vintagedates('FYFSD', limit = 15)
Out[3]:
{'realtime_start': '1776-07-04',
'realtime_end': '9999-12-31',
'order_by': 'vintage_date',
'sort_order': 'asc',
'count': 46,
'offset': 0,
'limit': 15,
'vintage_dates': [
'1998-02-02',
'1998-10-26',
'1999-02-01',
'1999-10-25',
'2000-02-07',
'2000-10-20',
'2001-04-09',
'2001-10-24',
'2002-02-04',
'2002-10-23',
'2003-02-03',
'2003-10-15',
'2004-02-02',
'2004-10-12',
'2005-02-23']}
In [4]: fred.series_stack['get_series_vintagedates']
Out[4]:
{'realtime_start': '1776-07-04',
'realtime_end': '9999-12-31',
'order_by': 'vintage_date',
'sort_order': 'asc',
'count': 46,
'offset': 0,
'limit': 15,
'vintage_dates': [
'1998-02-02',
'1998-10-26',
'1999-02-01',
'1999-10-25',
'2000-02-07',
'2000-10-20',
'2001-04-09',
'2001-10-24',
'2002-02-04',
'2002-10-23',
'2003-02-03',
'2003-10-15',
'2004-02-02',
'2004-10-12',
'2005-02-23']}
There are 5 stacks:
fred.category_stack
fred.release_stack
fred.series_stack
fred.source_stack
fred.tag_stack
After a method is called the returned data is stored using the method name for its key
Methods that store data in category stack:
fred.category_stack["get_a_category"]
fred.category_stack["get_child_categories"]
fred.category_stack["get_related_categories"]
fred.category_stack["get_series_in_a_category"]
fred.category_stack["get_tags_for_a_category"]
fred.category_stack["get_related_tags_for_a_category"]
Methods that store data in release stack:
fred.release_stack["get_a_release"]
fred.release_stack["get_tags_for_a_release"]
fred.release_stack["get_series_on_a_release"]
fred.release_stack["get_sources_for_a_release"]
fred.release_stack["get_related_tags_for_release"]
fred.release_stack["get_release_dates_all_releases"]
fred.release_stack["get_release_tables"]
fred.release_stack["get_release_dates"]
fred.release_stack["get_all_releases"]
Methods that store data in series stack:
fred.series_stack["get_a_series"]
fred.series_stack["get_categories_of_series"]
fred.series_stack["get_series_df"]
fred.series_stack["get_release_for_a_series"]
fred.series_stack["search_for_series"]
fred.series_stack["get_tags_for_series_search"]
fred.series_stack["get_related_tags_for_series_search"]
fred.series_stack["get_tags_for_a_series"]
fred.series_stack["get_series_updates"]
fred.series_stack["get_series_vintagedates"]
Methods that store data in source stack:
fred.source_stack["get_all_sources"]
fred.source_stack["get_releases_for_a_source"]
fred.source_stack["get_a_source"]
Methods that store data in tag stack:
fred.tag_stack["get_all_tags"]
fred.tag_stack["get_related_tags_for_a_tag"]
fred.tag_stack["get_series_matching_tags"]
By default fred.realtime_start
and fred.realtime_end
are set to None.
realtime_start and realtime_end arguments override fred.realtime_start
and fred.realtime_end
.
fred.observation_start
and fred.observation_end
are also None by default.
observation_start and observation_end arguments override fred.observation_start
and fred.observation_end
.
The full_fred
project welcomes feature requests, bug reports, bug fixes, documentation improvements, contributions of all kinds.
full_fred
aims to be responsive in integrating patches and listening to your feedback to be a community-driven API.
This project is also new and while full_fred
is still young there's great opportunity to contribute elements that may have disproportionate
impact in the long run
Apache v2.0