PyTorch Code for the paper:
"Training Domain-invariant Object Detector Faster with Feature Replay and Slow Learner"
Chaehyeon Lee, Junghoon Seo and Heechul Jung.
Original code is UAV-NDFT from VITA-Group.
Based on the original code, we implemented feature replay and slow learner additionally.
@InProceedings{Lee_2021_CVPR_Workshops,
author = {Lee, Chaehyeon and Seo, Junghoon and Jung, Heechul},
title = {Training Domain-invariant Object Detector Faster with Feature Replay and Slow Learner},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
month = {June},
year = {2021}
}
- Linux or macOS (Windows is in experimental support)
- Python 3.6
- PyTorch 0.4.1
- TorchVision 0.2.1
- CUDA 9.0 / 9.1
See get_started.md.
#!/bin/bash
CUDA_VISIBLE_DEVICES=0,1,2,3 python trainval_net_monitor.py --cuda --mGPUs --gamma_weather 0.01 --gamma_angle 0.01 --gamma_altitude 0.01 --use_adversarial_loss --bs 32 --ema-beta 0.99
#!/bin/bash
for ((i=0; i<=10; i++))
do
epoch=$(($i*1000/11914+1))
ckpt=$((i*1000%11914))
echo "$epoch"
echo "$ckpt"
CUDA_VISIBLE_DEVICES=0 python test_net.py --cuda --checkepoch "$epoch" --checkpoint "$ckpt" --gamma 0.5
done
Google Drive: https://drive.google.com/file/d/13xdLBfIWGYrjpT0Z3miAPKnKNDjNqLS9/view?usp=sharing
Google Drive: https://drive.google.com/file/d/1rxqr0Cq0y9cXhdWyNd_R_8cd68exD1wn/view?usp=sharing
We use models/baseline/faster_rcnn_1_4_3960.pth as pretrained model.
.
├── cfgs
├── data # UAVDT dataset with annotation
├── images
├── lib
├── logs # TensorBoard event files
├── models # Trained model (w/ adversarial loss and w/o adversarial loss)
├── output
├── summaries # Summary files recording the training and validation performance
├── README.md
├── _init_paths.py
├── bash_run.sh # Run the testing in batch
├── demo.py
├── requirements.txt
├── test_net.py
├── trainval_net.py
└── trainval_net_monitor.py