Feed Hungry Hungry Hippos (H3) - Do Languange Modeling with a 🦛 (unofficial)
This repository contains scripts for training and testing H3 State Space Models.
Varios experiments can be found as notebooks.
You will need to install the feed_h3
package from source with the following commands:
git clone --recurse-submodules -j8 https://github.com/1ucky40nc3/feed_h3
cd feed_h3
pip install -e ./external/H3/
pip install -e .
This work is based of the research Hungry Hungry Hippos: Towards Language Modeling with State Space Models paper. The implementation of the H3 model sourced from the official repository.
@Misc{feed_h3,
title = {Feed Hungry Hungry Hippos (H3) - Do Languange Modeling with a 🦛.},
author = {Louis Wendler},
howpublished = {\url{https://github.com/1ucky40nc3/feed_h3}},
year = {2023}
}
@inproceedings{dao2023hungry,
title={Hungry {H}ungry {H}ippos: Towards Language Modeling with State Space Models},
author={Dao, Tri and Fu, Daniel Y. and Saab, Khaled K. and Thomas, Armin W.
and Rudra, Atri and R{\'e}, Christopher},
booktitle={International Conference on Learning Representations},
year={2023}
}
@inproceedings{dao2022flashattention,
title={Flash{A}ttention: Fast and Memory-Efficient Exact Attention with {IO}-Awareness},
author={Dao, Tri and Fu, Daniel Y. and Ermon, Stefano and Rudra, Atri and R{\'e}, Christopher},
booktitle={Advances in Neural Information Processing Systems},
year={2022}
}
@Misc{accelerate,
title = {Accelerate: Training and inference at scale made simple, efficient and adaptable.},
author = {Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Mangrulkar},
howpublished = {\url{https://github.com/huggingface/accelerate}},
year = {2022}
}
@inproceedings{lhoest-etal-2021-datasets,
title = "Datasets: A Community Library for Natural Language Processing",
author = "Lhoest, Quentin and
Villanova del Moral, Albert and
Jernite, Yacine and
Thakur, Abhishek and
von Platen, Patrick and
Patil, Suraj and
Chaumond, Julien and
Drame, Mariama and
Plu, Julien and
Tunstall, Lewis and
Davison, Joe and
{\v{S}}a{\v{s}}ko, Mario and
Chhablani, Gunjan and
Malik, Bhavitvya and
Brandeis, Simon and
Le Scao, Teven and
Sanh, Victor and
Xu, Canwen and
Patry, Nicolas and
McMillan-Major, Angelina and
Schmid, Philipp and
Gugger, Sylvain and
Delangue, Cl{\'e}ment and
Matussi{\`e}re, Th{\'e}o and
Debut, Lysandre and
Bekman, Stas and
Cistac, Pierric and
Goehringer, Thibault and
Mustar, Victor and
Lagunas, Fran{\c{c}}ois and
Rush, Alexander and
Wolf, Thomas",
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.emnlp-demo.21",
pages = "175--184",
abstract = "The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets.",
eprint={2109.02846},
archivePrefix={arXiv},
primaryClass={cs.CL},
}