forked from iMeanAI/WebCanvas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
233 lines (194 loc) · 9.3 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
from agent.Environment.html_env.async_env import AsyncHTMLEnvironment
from evaluate import *
from agent.Plan import *
from dataclasses import dataclass
import re
import asyncio
import argparse
import logging
# universal tools
from agent.Utils.utils import *
# evaluate tools
from evaluate.evaluate_utils import run_task, read_config, read_file, read_json_file
from experiment_results import get_evaluate_result
logger = logging.getLogger(__name__)
@dataclass
class ExperimentConfig:
mode: str
global_reward_mode: str
planning_text_model: str
global_reward_text_model: str
ground_truth_mode: bool
single_task_name: str
config: dict
ground_truth_data: dict
write_result_file_path: str
record_time: str
file: list
def validate_config(config, observation_mode, global_reward_mode, observation_model, global_reward_model):
task_mode = config['basic']['task_mode']
batch_tasks_file_path = config['files']['batch_tasks_file_path']
json_model_response = config['model']['json_model_response']
all_json_models = config['model']['json_models']
interaction_mode = config['steps']['interaction_mode']
if observation_mode not in ["dom"]:
logger.error(
"observation mode is not correctly defined! Currently we only support DOM observation.")
exit()
if interaction_mode not in [True, False]:
logger.error(
"interaction_mode is not defined! Try to define whether you want to evaluate the agent in an interactive manner.")
exit()
if json_model_response and (observation_model not in all_json_models or (
global_reward_mode != 'no_global_reward' and global_reward_model not in all_json_models)):
logger.error("Model does not support JSON mode!")
exit()
if task_mode == 'batch_tasks' and not os.path.exists(batch_tasks_file_path):
logger.error("batch_tasks_file_path not exist!")
exit()
def get_task_range(task_mode, file, raw_data_index):
if task_mode == "batch_tasks":
if raw_data_index != -1:
re_result = re.split(r'\s|,', raw_data_index)
raw_data_start_index = int(re_result[0])
raw_data_end_index = int(re_result[-1]) + 1
else:
raw_data_start_index = 0
raw_data_end_index = len(file)
return range(raw_data_start_index, raw_data_end_index)
elif task_mode == "single_task":
return range(0, 1)
else:
logger.error("task_mode error!")
exit()
def log_task_info(task_index, task_name, reference_task_length, reference_evaluate_steps):
logger.info("*" * 100)
logger.info(f"task index: {task_index}")
logger.info(f"task name: {task_name}")
logger.info(f"task reference length: {reference_task_length}")
logger.info(f"raw data annotation: {reference_evaluate_steps}")
def generate_result_file_path(config):
return os.path.join(config["files"]["out_file_path"], "json_result")
def load_ground_truth_data(config, ground_truth_mode):
if ground_truth_mode:
ground_truth_file_path = config['files']['ground_truth_file_path']
if not os.path.exists(ground_truth_file_path):
logger.error("ground_truth_file_path not exist!")
exit()
return read_json_file(ground_truth_file_path)
return None
def create_html_environment(mode):
return AsyncHTMLEnvironment(
mode=mode,
max_page_length=8192,
headless=False,
slow_mo=1000,
current_viewport_only=False,
viewport_size={"width": 1080, "height": 720},
save_trace_enabled=False,
sleep_after_execution=0.0,
locale="en-US",
use_vimium_effect=True
)
async def run_experiment(task_range, experiment_config):
for task_index in task_range:
task_uuid = None
if experiment_config.config['basic']['task_mode'] == "batch_tasks":
task = experiment_config.file[task_index]
task_name, task_uuid, reference_task_length, reference_evaluate_steps = task
evaluate_steps = reference_evaluate_steps
log_task_info(task_index, task_name,
reference_task_length, reference_evaluate_steps)
elif experiment_config.config['basic']['task_mode'] == "single_task":
task_name = experiment_config.single_task_name
reference_task_length = experiment_config.config['steps']['single_task_action_step']
# TODO
evaluate_steps = experiment_config.config['steps']['single_task_action_step']
reference_evaluate_steps = None
logger.info(f"task_name: {task_name}")
env = create_html_environment(experiment_config.mode)
if not os.path.exists("token_results"):
os.makedirs("token_results")
token_counts_filename = f"token_results/token_counts_{experiment_config.record_time}_{experiment_config.planning_text_model}_{experiment_config.global_reward_text_model}.json"
await run_task(mode=experiment_config.mode,
task_mode=experiment_config.config['basic']['task_mode'],
task_name=task_name,
task_uuid=task_uuid,
config=experiment_config.config,
write_result_file_path=experiment_config.write_result_file_path,
reference_task_length=reference_task_length,
evaluate_steps=evaluate_steps,
reference_evaluate_steps=reference_evaluate_steps,
env=env,
global_reward_mode=experiment_config.global_reward_mode,
global_reward_text_model=experiment_config.global_reward_text_model,
planning_text_model=experiment_config.planning_text_model,
ground_truth_mode=experiment_config.ground_truth_mode,
ground_truth_data=experiment_config.ground_truth_data,
interaction_mode=experiment_config.config['steps']['interaction_mode'],
task_index=task_index,
record_time=experiment_config.record_time,
token_pricing=experiment_config.config['token_pricing'])
await env.close()
del env
with open(token_counts_filename, 'r') as file:
data = json.load(file)
total_token_cost = data.get("total_token_cost", 0)
get_evaluate_result(experiment_config.config["files"]["out_file_path"], total_token_cost)
logger.info('\033[31mAll tasks finished!\033[0m')
logger.info('\033[31mPress Enter to exit...\033[0m')
async def main(global_reward_mode="no_global_reward",
planning_text_model="gpt-4-turbo",
global_reward_text_model="gpt-4-turbo",
single_task_name="",
raw_data_index=-1,
observation_mode="dom",
ground_truth_mode=False,
toml_path=None
):
config = read_config(toml_path)
validate_config(config, observation_mode, global_reward_mode, planning_text_model, global_reward_text_model)
file = None
if config['basic']['task_mode'] == "batch_tasks":
file = read_file(file_path=config['files']['batch_tasks_file_path'])
task_range = get_task_range(
config['basic']['task_mode'], file, raw_data_index)
elif config['basic']['task_mode'] == "single_task":
task_range = get_task_range(config['basic']['task_mode'], None, -1)
record_time = time.strftime("%Y%m%d-%H%M%S", time.localtime())
write_result_file_path = generate_result_file_path(config)
ground_truth_data = load_ground_truth_data(config, ground_truth_mode)
experiment_config = ExperimentConfig(
mode=observation_mode,
global_reward_mode=global_reward_mode,
planning_text_model=planning_text_model,
global_reward_text_model=global_reward_text_model,
ground_truth_mode=ground_truth_mode,
single_task_name=single_task_name,
config=config,
ground_truth_data=ground_truth_data,
write_result_file_path=write_result_file_path,
record_time=record_time,
file=file
)
await run_experiment(task_range, experiment_config)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Run the web agent in different modes.")
parser.add_argument("--global_reward_mode",
choices=["dom_vision_reward", "dom_reward",
"vision_reward", "no_global_reward"],
default="no_global_reward", help="Choose the mode of global reward.")
parser.add_argument("--index", type=str, default=-1)
parser.add_argument("--single_task_name", type=str,
default="Find Dota 2 game and add all DLC to cart in steam.")
parser.add_argument("--planning_text_model", type=str, default="gpt-4o-mini")
parser.add_argument("--global_reward_text_model", type=str, default="gpt-4o-mini")
args = parser.parse_args()
asyncio.run(main(global_reward_mode=args.global_reward_mode,
planning_text_model=args.planning_text_model,
global_reward_text_model=args.global_reward_text_model,
single_task_name=args.single_task_name,
raw_data_index=args.index
)
)