-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathidcnn.py
74 lines (68 loc) · 3.04 KB
/
idcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
import math
from data_loader import tagDict
from tqdm import tgrange
from tqdm import tqdm
import torch.optim as optim
from data_loader import id2tag
import sys
from transformers import BertModel
class IDCNN(nn.Module):
def __init__(self, config, layerNumber=4, blockNumber=3,kernel_size=3):
super(IDCNN, self).__init__()
self.batchSize = config['model']['batchSize']
self.dropout = config['model']['dropout']
self.device = config['DEVICE']
self.hiddenSize = config['model']['hiddenSize']
self.bertModel = BertModel.from_pretrained(config['model']['bert_base_chinese'])
self.linear1 = nn.Linear(768, self.hiddenSize)
self.idcnn = nn.Sequential()
self.linear2 = nn.Linear(self.hiddenSize, len(tagDict))
net = nn.Sequential()
for i in range(layerNumber):
dilation = int(math.pow(2, i)) if i+1 < layerNumber else 1
block = nn.Conv1d(in_channels = self.hiddenSize,
out_channels = self.hiddenSize,
kernel_size = kernel_size,
dilation = dilation,
padding = kernel_size // 2 + dilation - 1)
net.add_module("layer%d"%i, block)
net.add_module("relu", nn.ReLU(True))
for i in range(blockNumber):
self.idcnn.add_module("block%i"%i, net)
self.idcnn.add_module("dropout", nn.Dropout(self.dropout))
weight = torch.Tensor([1, 1, 3, 3, 3]).to(config['DEVICE'])
self.criterion = nn.CrossEntropyLoss(weight=weight)
def forward(self, batchSentence, batchTag):
#字符嵌入
attention_mask = batchSentence.data.gt(0).float()
embeddings = self.bertModel(batchSentence, attention_mask=attention_mask)[0]
embeddings = nn.Dropout(self.dropout)(embeddings)
input = self.linear1(embeddings)
input = input.permute(0, 2, 1)
output = self.idcnn(input).permute(0, 2, 1)
output = self.linear2(output)
activeIndex = (batchTag != 0).view(-1)
output = output.view(-1, len(tagDict))[activeIndex]
batchTag = batchTag.view(-1)[activeIndex]
loss = self.criterion(output, batchTag)
return loss
def decode(self, batchSentence):
#字符嵌入
attention_mask = batchSentence.data.gt(0).float()
embeddings = self.bertModel(batchSentence, attention_mask=attention_mask)[0]
input = self.linear1(embeddings)
input = input.permute(0, 2, 1)
output = self.idcnn(input).permute(0, 2, 1)
output = self.linear2(output)
output = F.softmax(output, dim=2)
result, probArr = [], []
for sentenceEle, hEle in zip(batchSentence, output):
activeIndex = (sentenceEle != 0)
hEle = hEle[activeIndex]
result.append([element.argmax().item() for element in hEle])
probArr.append(hEle.cpu().numpy().tolist())
return result, probArr