-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbilstm.py
69 lines (61 loc) · 2.94 KB
/
bilstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#from pytorch_pretrained_bert import BertModel
from data_loader import tagDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from tqdm import tqdm
import torch.optim as optim
from data_loader import id2tag
from pytorch_pretrained_bert import BertTokenizer
from util import acquireEntity
import sys
from util import generateResult
from transformers import BertModel
from transformers import XLNetModel
from transformers import XLNetTokenizer
class BiLSTM(nn.Module):
def __init__(self, config):
super().__init__()
if config['model']['pretrained_model'] == 'XLNet':
self.pretrainedModel = XLNetModel.from_pretrained(config['model']['xlnet_base_chinese'])
self.tokenizer = XLNetTokenizer.from_pretrained(self.config['model']['xlnet_base_chinese'], do_lower_case=True)
if config['model']['pretrained_model'] == 'Bert':
self.pretrainedModel = BertModel.from_pretrained(config['model']['bert_base_chinese'])
self.tokenizer = BertTokenizer.from_pretrained(config['model']['bert_base_chinese'], do_lower_case=True)
#for p in self.bertModel.parameters(): p.requires_grad = False
self.dropout = nn.Dropout(config['model']['dropout'])
self.lstm = nn.LSTM(input_size=768, hidden_size=768//2, batch_first=True,bidirectional=True)#, num_layers=2,dropout=config['model']['dropout'])
#self.layerNorm = nn.LayerNorm(768)
self.fc = nn.Linear(768, len(tagDict))
#weight = torch.Tensor([1, 1, 2.5, 2.5, 2.5]).to(config['DEVICE'])
weight = torch.Tensor([1, 1, 3, 3, 3]).to(config['DEVICE'])
self.criterion = nn.CrossEntropyLoss(weight=weight)
#self.criterion = nn.CrossEntropyLoss()
def forward(self, batchSentence, batchTag):
#self.lstm.flatten_parameters()
mask = batchSentence.data.gt(0).float()
encodedLayers = self.pretrainedModel(batchSentence, attention_mask=mask)[0]
encodedLayers = self.dropout(encodedLayers)
h, _ = self.lstm(encodedLayers)
#h = self.layerNorm(h)
h = self.dropout(h)
h = self.fc(h)
activeIndex = (batchTag != 0).view(-1)
h = h.view(-1, len(tagDict))[activeIndex]
batchTag = batchTag.view(-1)[activeIndex]
loss = self.criterion(h, batchTag)
return loss
def decode(self, batchSentence):
#self.lstm.flatten_parameters()
mask = batchSentence.data.gt(0).float()
encodedLayers = self.pretrainedModel(batchSentence, attention_mask=mask)[0]
h, _ = self.lstm(encodedLayers)
h = self.fc(h)
h = F.softmax(h, dim=2)
result, probArr = [], []
for sentenceEle, hEle in zip(batchSentence, h):
activeIndex = sentenceEle != 0
hEle = hEle[activeIndex]
result.append([element.argmax().item() for element in hEle])
probArr.append(hEle.cpu().numpy().tolist())
return result, probArr#hELe各部分概率