-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain.py
287 lines (242 loc) · 10.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import torch
import torch.nn.functional as F
import numpy as np
from datetime import datetime
from torchvision.utils import make_grid
from utils import clip_gradient, adjust_lr
from tensorboardX import SummaryWriter
import logging
import torch.backends.cudnn as cudnn
from config import opt
from torch.cuda import amp
# set the device for training
cudnn.benchmark = True
cudnn.enabled = True
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_id
print('USE GPU:', opt.gpu_id)
# build the model
from LSNet import LSNet
model = LSNet()
if (opt.load is not None):
model.load_state_dict(torch.load(opt.load))
print('load model from ', opt.load)
model.cuda()
params = model.parameters()
optimizer = torch.optim.Adam(params, opt.lr)
# set the path
train_dataset_path = opt.train_root
val_dataset_path = opt.val_root
save_path = opt.save_path
if not os.path.exists(save_path):
os.makedirs(save_path)
# load data
print('load data...')
if opt.task =='RGBT':
from rgbt_dataset import get_loader, test_dataset
image_root = train_dataset_path + '/RGB/'
ti_root = train_dataset_path + '/T/'
gt_root = train_dataset_path + '/GT/'
val_image_root = val_dataset_path + '/RGB/'
val_ti_root = val_dataset_path + '/T/'
val_gt_root = val_dataset_path + '/GT/'
elif opt.task == 'RGBD':
from rgbd_dataset import get_loader, test_dataset
image_root = train_dataset_path + '/RGB/'
ti_root = train_dataset_path + '/depth/'
gt_root = train_dataset_path + '/GT/'
val_image_root = val_dataset_path + '/RGB/'
val_ti_root = val_dataset_path + '/depth/'
val_gt_root = val_dataset_path + '/GT/'
else:
raise ValueError(f"Unknown task type {opt.task}")
train_loader = get_loader(image_root, gt_root, ti_root, batchsize=opt.batchsize, trainsize=opt.trainsize)
test_loader = test_dataset(val_image_root, val_gt_root,val_ti_root, opt.trainsize)
total_step = len(train_loader)
# print(total_step)
logging.basicConfig(filename=save_path + 'log.log', format='[%(asctime)s-%(filename)s-%(levelname)s:%(message)s]',
level=logging.INFO, filemode='a', datefmt='%Y-%m-%d %I:%M:%S %p')
logging.info("Model:")
logging.info(model)
logging.info(save_path + "Train")
logging.info("Config")
logging.info(
'epoch:{};lr:{};batchsize:{};trainsize:{};clip:{};decay_rate:{};load:{};save_path:{};decay_epoch:{}'.format(
opt.epoch, opt.lr, opt.batchsize, opt.trainsize, opt.clip, opt.decay_rate, opt.load, save_path,
opt.decay_epoch))
# set loss function
import torch.nn as nn
class IOUBCE_loss(nn.Module):
def __init__(self):
super(IOUBCE_loss, self).__init__()
self.nll_lose = nn.BCEWithLogitsLoss()
def forward(self, input_scale, taeget_scale):
b,_,_,_ = input_scale.size()
loss = []
for inputs, targets in zip(input_scale, taeget_scale):
bce = self.nll_lose(inputs,targets)
pred = torch.sigmoid(inputs)
inter = (pred * targets).sum(dim=(1, 2))
union = (pred + targets).sum(dim=(1, 2))
IOU = (inter + 1) / (union - inter + 1)
loss.append(1- IOU + bce)
total_loss = sum(loss)
return total_loss / b
CE = torch.nn.BCEWithLogitsLoss().cuda()
IOUBCE = IOUBCE_loss().cuda()
class IOUBCEWithoutLogits_loss(nn.Module):
def __init__(self):
super(IOUBCEWithoutLogits_loss, self).__init__()
self.nll_lose = nn.BCELoss()
def forward(self, input_scale, target_scale):
b,c,h,w = input_scale.size()
loss = []
for inputs, targets in zip(input_scale, target_scale):
bce = self.nll_lose(inputs,targets)
inter = (inputs * targets).sum(dim=(1, 2))
union = (inputs + targets).sum(dim=(1, 2))
IOU = (inter + 1) / (union - inter + 1)
loss.append(1- IOU + bce)
total_loss = sum(loss)
return total_loss / b
IOUBCEWithoutLogits = IOUBCEWithoutLogits_loss().cuda()
step = 0
writer = SummaryWriter(save_path + 'summary', flush_secs = 30)
best_mae = 1
best_epoch = 0
Sacler = amp.GradScaler()
# BBA
def tesnor_bound(img, ksize):
'''
:param img: tensor, B*C*H*W
:param ksize: tensor, ksize * ksize
:param 2patches: tensor, B * C * H * W * ksize * ksize
:return: tensor, (inflation - corrosion), B * C * H * W
'''
B, C, H, W = img.shape
pad = int((ksize - 1) // 2)
img_pad = F.pad(img, pad=[pad, pad, pad, pad], mode='constant',value = 0)
# unfold in the second and third dimensions
patches = img_pad.unfold(2, ksize, 1).unfold(3, ksize, 1)
corrosion, _ = torch.min(patches.contiguous().view(B, C, H, W, -1), dim=-1)
inflation, _ = torch.max(patches.contiguous().view(B, C, H, W, -1), dim=-1)
return inflation - corrosion
# train function
def train(train_loader, model, optimizer, epoch, save_path):
global step
model.train()
loss_all = 0
epoch_step = 0
try:
for i, (images, gts, tis) in enumerate(train_loader, start=1):
optimizer.zero_grad()
images = images.cuda()
tis = tis.cuda()
gts = gts.cuda()
if opt.task == 'RGBD':
tis = torch.cat((tis, tis, tis), dim=1)
gts2 = F.interpolate(gts, (112, 112))
gts3 = F.interpolate(gts, (56, 56))
bound = tesnor_bound(gts, 3).cuda()
bound2 = F.interpolate(bound, (112, 112))
bound3 = F.interpolate(bound, (56, 56))
out = model(images, tis)
loss1 = IOUBCE(out[0], gts)
loss2 = IOUBCE(out[1], gts2)
loss3 = IOUBCE(out[2], gts3)
predict_bound0 = out[0]
predict_bound1 = out[1]
predict_bound2 = out[2]
predict_bound0 = tesnor_bound(torch.sigmoid(predict_bound0), 3)
predict_bound1 = tesnor_bound(torch.sigmoid(predict_bound1), 3)
predict_bound2 = tesnor_bound(torch.sigmoid(predict_bound2), 3)
loss6 = IOUBCEWithoutLogits(predict_bound0, bound)
loss7 = IOUBCEWithoutLogits(predict_bound1, bound2)
loss8 = IOUBCEWithoutLogits(predict_bound2, bound3)
loss_sod = loss1 + loss2 + loss3
loss_bound = loss6 + loss7 + loss8
loss_trans = out[3]
loss = loss_sod + loss_bound + loss_trans
loss.backward()
optimizer.step()
step = step + 1
epoch_step = epoch_step + 1
loss_all = loss.item() + loss_all
if i % 10 == 0 or i == total_step or i == 1:
print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], Loss: {:.4f}, loss_sod: {:.4f},'
'loss_bound: {:.4f},loss_trans: {:.4f}'.
format(datetime.now(), epoch, opt.epoch, i, total_step, loss.item(),
loss_sod.item(),loss_bound.item(), loss_trans.item()))
logging.info('#TRAIN#:Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], Loss: {:.4f}, loss_sod: {:.4f},'
'loss_bound: {:.4f},loss_trans: {:.4f} '.
format(epoch, opt.epoch, i, total_step, loss.item(),
loss_sod.item(),loss_bound.item(), loss_trans.item()))
writer.add_scalar('Loss', loss, global_step=step)
# grid_image = make_grid(images[0].clone().cpu().data, 1, normalize=True)
# writer.add_image('train/RGB', grid_image, step)
grid_image = make_grid(gts[0].clone().cpu().data, 1, normalize=True)
writer.add_image('train/Ground_truth', grid_image, step)
grid_image = make_grid(bound[0].clone().cpu().data, 1, normalize=True)
writer.add_image('train/bound', grid_image, step)
# grid_image = make_grid(body[0].clone().cpu().data, 1, normalize=True)
# writer.add_image('train/body', grid_image, step)
res = out[0][0].clone()
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
writer.add_image('OUT/out', torch.tensor(res), step, dataformats='HW')
res = predict_bound0[0].clone()
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
writer.add_image('OUT/bound', torch.tensor(res), step, dataformats='HW')
loss_all /= epoch_step
# logging.info('#TRAIN#:Epoch [{:03d}/{:03d}], Loss_AVG: {:.4f}'.format(epoch, opt.epoch, loss_all))
writer.add_scalar('Loss-epoch', loss_all, global_step=epoch)
if (epoch) % 5 == 0:
torch.save(model.state_dict(), save_path + 'Net_epoch_{}.pth'.format(epoch))
except KeyboardInterrupt:
print('Keyboard Interrupt: save model and exit.')
if not os.path.exists(save_path):
os.makedirs(save_path)
torch.save(model.state_dict(), save_path + 'Net_epoch_{}.pth'.format(epoch + 1))
print('save checkpoints successfully!')
raise
# test function
def test(test_loader, model, epoch, save_path):
global best_mae, best_epoch
model.eval()
with torch.no_grad():
mae_sum = 0
for i in range(test_loader.size):
image, gt, ti, name = test_loader.load_data()
gt = gt.cuda()
image = image.cuda()
ti = ti.cuda()
if opt.task == 'RGBD':
tis = torch.cat((tis, tis, tis), dim=1)
res = model(image, ti)
res = torch.sigmoid(res)
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
mae_train = torch.sum(torch.abs(res - gt)) * 1.0 / (torch.numel(gt))
# print(mae_train)
mae_sum = mae_train.item() + mae_sum
# print(test_loader.size)
mae = mae_sum / test_loader.size
# print(test_loader.size)
writer.add_scalar('MAE', torch.as_tensor(mae), global_step=epoch)
print('Epoch: {} MAE: {} #### bestMAE: {} bestEpoch: {}'.format(epoch, mae, best_mae, best_epoch))
if epoch == 1:
best_mae = mae
else:
if mae < best_mae:
best_mae = mae
best_epoch = epoch
torch.save(model.state_dict(), save_path + 'Net_epoch_best.pth')
print('best epoch:{}'.format(epoch))
logging.info('#TEST#:Epoch:{} MAE:{} bestEpoch:{} bestMAE:{}'.format(epoch, mae, best_epoch, best_mae))
if __name__ == '__main__':
print("Start train...")
for epoch in range(1, opt.epoch+1):
cur_lr = adjust_lr(optimizer, opt.lr, epoch, opt.decay_rate, opt.decay_epoch)
writer.add_scalar('learning_rate', cur_lr, global_step=epoch)
train(train_loader, model, optimizer, epoch, save_path)
test(test_loader, model, epoch, save_path)