-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCCAFNet.py
350 lines (304 loc) · 12.8 KB
/
CCAFNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import torch
import torch.nn as nn
import math
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
import torchvision.models as models
class Separable_conv(nn.Module):
def __init__(self, inp, oup):
super(Separable_conv, self).__init__()
self.conv = nn.Sequential(
# dw
nn.Conv2d(inp, inp, kernel_size=3, stride=1, padding=1, groups=inp, bias=False),
nn.BatchNorm2d(inp),
nn.ReLU(inplace=True),
# pw
nn.Conv2d(inp, oup, kernel_size=1),
)
def forward(self, x):
return self.conv(x)
model = models.vgg16_bn(pretrained=True)
model_urls = {
'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth',
'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth',
'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth',
'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth',
}
class vgg_rgb(nn.Module):
def __init__(self, pretrained=True):
super(vgg_rgb, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, 3, 1, 1), # first model 224*24*64
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, 3, 1, 1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True), # [:6]
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, 3, 1, 1), # second model 112*112*128
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, 3, 1, 1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True), # [6:13]
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, 3, 1, 1), # third model 56*56*256
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, 3, 1, 1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, 3, 1, 1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True), # [13:23]
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, 3, 1, 1), # forth model 28*28*512
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, 1, 1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, 1, 1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True), # [13:33]
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 512, 3, 1, 1), # fifth model 14*14*512
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, 1, 1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, 1, 1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True), # [33:43]
)
if pretrained:
pretrained_vgg = model_zoo.load_url(model_urls['vgg16_bn'])
model_dict = {}
state_dict = self.state_dict()
for k, v in pretrained_vgg.items():
if k in state_dict:
model_dict[k] = v
# print(k, v)
state_dict.update(model_dict)
self.load_state_dict(state_dict)
def forward(self, rgb):
A1 = self.features[:6](rgb)
A2 = self.features[6:13](A1)
A3 = self.features[13:23](A2)
A4 = self.features[23:33](A3)
A5 = self.features[33:43](A4)
return A1, A2, A3, A4, A5
class vgg_depth(nn.Module):
def __init__(self, pretrained=True):
super(vgg_depth, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, 3, 1, 1), # first model 224*224*64
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, 3, 1, 1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True), # [:6]
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, 3, 1, 1), # second model 112*112*128
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, 3, 1, 1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True), # [6:13]
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, 3, 1, 1), # third model 56*56*256
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, 3, 1, 1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, 3, 1, 1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True), # [13:23]
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, 3, 1, 1), # forth model 28*28*512
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, 1, 1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, 1, 1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True), # [13:33]
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 512, 3, 1, 1), # fifth model 14*14*512
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, 1, 1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, 3, 1, 1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True), # [33:43]
)
if pretrained:
pretrained_vgg = model_zoo.load_url(model_urls['vgg16_bn'])
model_dict = {}
state_dict = self.state_dict()
for k, v in pretrained_vgg.items():
if k in state_dict:
model_dict[k] = v
# print(k, v)
state_dict.update(model_dict)
self.load_state_dict(state_dict)
def forward(self, thermal):
A1_d = self.features[:6](thermal)
A2_d = self.features[6:13](A1_d)
A3_d = self.features[13:23](A2_d)
A4_d = self.features[23:33](A3_d)
A5_d = self.features[33:43](A4_d)
return A1_d, A2_d, A3_d, A4_d, A5_d
class Hsigmoid(nn.Module):
def __init__(self, inplace=True):
super(Hsigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
return F.relu6(x + 3., inplace=self.inplace) / 6.
class Spatical_Fuse_attention3_GHOST(nn.Module): # 最终为rgb rgb, y为depth 加入恒等变化
def __init__(self, in_channels,):
super(Spatical_Fuse_attention3_GHOST, self).__init__()
self.conv = nn.Conv2d(in_channels, 1, 3, 1, 1)
self.active = Hsigmoid()
def forward(self, x, y):
input_y = self.conv(y)
input_y = self.active(input_y)
# return input_y
return x + x * input_y
class Channel_Fuse_attention2(nn.Module): # 最终为depth x为depth, y为rgb 加入恒等变化
def __init__(self, channel, reduction=4):
super(Channel_Fuse_attention2, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.Linear(channel // reduction, channel, bias=False),
Hsigmoid()
)
def forward(self, x, y):
b, c, _, _ = x.size()
y = self.avg_pool(y).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x + x * y.expand_as(x)
class Gatefusion3(nn.Module):
def __init__(self, channel):
super(Gatefusion3, self).__init__()
self.channel = channel
self.gate = nn.Sigmoid()
def forward(self, x, y, fusion_up):
first_fusion = torch.cat((x, y), dim=1)
gate_fusion = self.gate(first_fusion)
gate_fusion = torch.split(gate_fusion, self.channel, dim=1)
fusion_x = gate_fusion[0] * x + x
fusion_y = gate_fusion[1] * y + y
fusion = fusion_x + fusion_y
fusion = torch.abs((fusion - fusion_up)) * fusion + fusion
return fusion
class Gatefusion3_fusionup(nn.Module):
def __init__(self, channel):
super(Gatefusion3_fusionup, self).__init__()
self.channel = channel
self.gate = nn.Sigmoid()
def forward(self, x, y):
first_fusion = torch.cat((x, y), dim=1)
gate_fusion = self.gate(first_fusion)
gate_fusion = torch.split(gate_fusion, self.channel, dim=1)
fusion_x = gate_fusion[0] * x + x
fusion_y = gate_fusion[1] * y + y
fusion = fusion_x + fusion_y
return fusion
class CCAFNet(nn.Module):
def __init__(self, ):
super(CCAFNet, self).__init__()
# rgb,depth encode
self.rgb_pretrained = vgg_rgb()
self.depth_pretrained = vgg_depth()
# rgb Fuse_model
self.SAG1 = Spatical_Fuse_attention3_GHOST(64)
self.SAG2 = Spatical_Fuse_attention3_GHOST(128)
self.SAG3 = Spatical_Fuse_attention3_GHOST(256)
# depth Fuse_model
self.CAG4 = Channel_Fuse_attention2(512)
self.CAG5 = Channel_Fuse_attention2(512)
self.gatefusion5 = Gatefusion3_fusionup(512)
self.gatefusion4 = Gatefusion3(512)
self.gatefusion3 = Gatefusion3(256)
self.gatefusion2 = Gatefusion3(128)
self.gatefusion1 = Gatefusion3(64)
# Upsample_model
self.upsample1 = nn.Sequential(nn.Conv2d(288, 144, 3, 1, 1),nn.BatchNorm2d(144),nn.ReLU())
self.upsample2 = nn.Sequential(nn.Conv2d(448, 224,3,1,1),nn.BatchNorm2d(224),nn.ReLU(),
nn.UpsamplingBilinear2d(scale_factor=2, ))
self.upsample3 = nn.Sequential(nn.Conv2d(640, 320,3,1,1),nn.BatchNorm2d(320),nn.ReLU(),
nn.UpsamplingBilinear2d(scale_factor=2, ))
self.upsample4 = nn.Sequential(nn.Conv2d(768, 384,3,1,1),nn.BatchNorm2d(384),nn.ReLU(),
nn.UpsamplingBilinear2d(scale_factor=2, ))
self.upsample5 = nn.Sequential(nn.Conv2d(512, 256,3,1,1),nn.BatchNorm2d(256),nn.ReLU(),
nn.UpsamplingBilinear2d(scale_factor=2, ))
# duibi
self.upsample5_4 = nn.Sequential(nn.Conv2d(512, 512,3,1,1),nn.BatchNorm2d(512),nn.ReLU(),
nn.UpsamplingBilinear2d(scale_factor=2, ))
self.upsample4_3 = nn.Sequential(nn.Conv2d(768, 256,3,1,1),nn.BatchNorm2d(256),nn.ReLU(),
nn.UpsamplingBilinear2d(scale_factor=2, ))
self.upsample3_2 = nn.Sequential(nn.Conv2d(640, 128,3,1,1),nn.BatchNorm2d(128),nn.ReLU(),
nn.UpsamplingBilinear2d(scale_factor=2, ))
self.upsample2_1 = nn.Sequential(nn.Conv2d(448, 64,3,1,1),nn.BatchNorm2d(64),nn.ReLU(),
nn.UpsamplingBilinear2d(scale_factor=2, ))
self.conv = nn.Conv2d(144, 1, 1)
self.conv2 = nn.Conv2d(224, 1, 1)
self.conv3 = nn.Conv2d(320, 1, 1)
self.conv4 = nn.Conv2d(384, 1, 1)
self.conv5 = nn.Conv2d(256, 1, 1)
def forward(self, rgb, depth):
# rgb
A1, A2, A3, A4, A5 = self.rgb_pretrained(rgb)
# depth
A1_d, A2_d, A3_d, A4_d, A5_d = self.depth_pretrained(depth)
SAG1_R = self.SAG1(A1, A1_d)
SAG2_R = self.SAG2(A2, A2_d)
SAG3_R = self.SAG3(A3, A3_d)
CAG5_D = self.CAG5(A5_d, A5)
CAG4_D = self.CAG4(A4_d, A4)
F5 = self.gatefusion5(A5, CAG5_D)
F5_UP = self.upsample5_4(F5)
F5 = self.upsample5(F5) # 14*14
F4 = self.gatefusion4(A4, CAG4_D, F5_UP)
F4 = torch.cat((F4, F5), dim=1)
F4_UP = self.upsample4_3(F4)
F4 = self.upsample4(F4) # 28*28
F3 = self.gatefusion3(SAG3_R, A3_d, F4_UP)
F3 = torch.cat((F3, F4), dim=1)
F3_UP = self.upsample3_2(F3)
F3 = self.upsample3(F3) # 56*56
F2 = self.gatefusion2(SAG2_R, A2_d, F3_UP)
F2 = torch.cat((F2, F3), dim=1)
F2_UP = self.upsample2_1(F2)
F2 = self.upsample2(F2) # 112*112
F1 = self.gatefusion1(SAG1_R, A1_d, F2_UP)
F1 = torch.cat((F1, F2), dim=1)
F1 = self.upsample1(F1) # 224*224
out = self.conv(F1)
out5 = self.conv5(F5)
out4 = self.conv4(F4)
out3 = self.conv3(F3)
out2 = self.conv2(F2)
if self.training:
return out, out2, out3, out4, out5
return out
if __name__=='__main__':
# model = ghost_net()
# model.eval()
model = CCAFNet()
rgb = torch.randn(1, 3, 224, 224)
depth = torch.randn(1, 3, 224, 224)
out = model(rgb,depth)
for i in out:
print(i.shape)