-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrainer.py
604 lines (520 loc) · 25.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
# coding=utf-8
# Copyright 2020-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The Trainer class, to easily train a 🤗 Transformers from scratch or finetune it on a new task.
"""
import collections
import inspect
import math
import os
import re
import shutil
import fitlog
import warnings
import random
import copy
from tqdm import tqdm
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union, NamedTuple
# Integrations must be imported before ML frameworks:
from transformers.integrations import ( # isort: split
default_hp_search_backend,
hp_params,
is_azureml_available,
is_comet_available,
is_fairscale_available,
is_mlflow_available,
is_optuna_available,
is_ray_available,
is_tensorboard_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
)
from utils import *
import numpy as np
import torch
from packaging import version
from torch import nn
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.dataset import Dataset
from torch.utils.data.distributed import DistributedSampler
from torch.utils.data.sampler import RandomSampler, SequentialSampler
from transformers.data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator
from transformers.file_utils import WEIGHTS_NAME, is_datasets_available, is_in_notebook, is_torch_tpu_available
from transformers.modeling_utils import PreTrainedModel
from transformers.models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from transformers.optimization import AdamW, get_linear_schedule_with_warmup
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_callback import (
CallbackHandler,
DefaultFlowCallback,
PrinterCallback,
ProgressCallback,
TrainerCallback,
TrainerControl,
TrainerState,
)
from transformers.trainer_pt_utils import (
DistributedTensorGatherer,
SequentialDistributedSampler,
distributed_broadcast_scalars,
distributed_concat,
get_tpu_sampler,
nested_concat,
nested_detach,
nested_numpify,
nested_xla_mesh_reduce,
reissue_pt_warnings,
)
from transformers.trainer_utils import (
PREFIX_CHECKPOINT_DIR,
BestRun,
HPSearchBackend,
TrainOutput,
default_compute_objective,
default_hp_space,
set_seed,
)
from training_args import TrainingArguments
from transformers.utils import logging
# Evaluation
from sklearn import metrics
from sklearn.metrics import confusion_matrix
from sklearn.neighbors import LocalOutlierFactor
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
_is_native_amp_available = False
DEFAULT_CALLBACKS = [DefaultFlowCallback]
DEFAULT_PROGRESS_CALLBACK = ProgressCallback
if is_in_notebook():
from transformers.utils.notebook import NotebookProgressCallback
DEFAULT_PROGRESS_CALLBACK = NotebookProgressCallback
# Check if Pytorch version >= 1.6 to switch between Native AMP and Apex
if version.parse(torch.__version__) < version.parse("1.6"):
from transformers.file_utils import is_apex_available
if is_apex_available():
from apex import amp
else:
_is_native_amp_available = True
from torch.cuda.amp import autocast
if is_datasets_available():
import datasets
if is_torch_tpu_available():
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
import torch_xla.distributed.parallel_loader as pl
if is_tensorboard_available():
from transformers.integrations import TensorBoardCallback
DEFAULT_CALLBACKS.append(TensorBoardCallback)
if is_wandb_available():
from transformers.integrations import WandbCallback
DEFAULT_CALLBACKS.append(WandbCallback)
if is_comet_available():
from transformers.integrations import CometCallback
DEFAULT_CALLBACKS.append(CometCallback)
if is_mlflow_available():
from transformers.integrations import MLflowCallback
DEFAULT_CALLBACKS.append(MLflowCallback)
if is_optuna_available():
import optuna
if is_ray_available():
from ray import tune
if is_azureml_available():
from transformers.integrations import AzureMLCallback
DEFAULT_CALLBACKS.append(AzureMLCallback)
if is_fairscale_available():
from fairscale.nn.data_parallel import ShardedDataParallel as ShardedDDP
from fairscale.optim import OSS
from fairscale.optim.grad_scaler import ShardedGradScaler
logger = logging.get_logger(__name__)
filter_words = ['a', 'about', 'above', 'across', 'after', 'afterwards', 'again', 'against', 'ain', 'all', 'almost',
'alone', 'along', 'already', 'also', 'although', 'am', 'among', 'amongst', 'an', 'and', 'another',
'any', 'anyhow', 'anyone', 'anything', 'anyway', 'anywhere', 'are', 'aren', "aren't", 'around', 'as',
'at', 'back', 'been', 'before', 'beforehand', 'behind', 'being', 'below', 'beside', 'besides',
'between', 'beyond', 'both', 'but', 'by', 'can', 'cannot', 'could', 'couldn', "couldn't", 'd', 'didn',
"didn't", 'doesn', "doesn't", 'don', "don't", 'down', 'due', 'during', 'either', 'else', 'elsewhere',
'empty', 'enough', 'even', 'ever', 'everyone', 'everything', 'everywhere', 'except', 'first', 'for',
'former', 'formerly', 'from', 'hadn', "hadn't", 'hasn', "hasn't", 'haven', "haven't", 'he', 'hence',
'her', 'here', 'hereafter', 'hereby', 'herein', 'hereupon', 'hers', 'herself', 'him', 'himself', 'his',
'how', 'however', 'hundred', 'i', 'if', 'in', 'indeed', 'into', 'is', 'isn', "isn't", 'it', "it's",
'its', 'itself', 'just', 'latter', 'latterly', 'least', 'll', 'may', 'me', 'meanwhile', 'mightn',
"mightn't", 'mine', 'more', 'moreover', 'most', 'mostly', 'must', 'mustn', "mustn't", 'my', 'myself',
'namely', 'needn', "needn't", 'neither', 'never', 'nevertheless', 'next', 'no', 'nobody', 'none',
'noone', 'nor', 'not', 'nothing', 'now', 'nowhere', 'o', 'of', 'off', 'on', 'once', 'one', 'only',
'onto', 'or', 'other', 'others', 'otherwise', 'our', 'ours', 'ourselves', 'out', 'over', 'per',
'please', 's', 'same', 'shan', "shan't", 'she', "she's", "should've", 'shouldn', "shouldn't", 'somehow',
'something', 'sometime', 'somewhere', 'such', 't', 'than', 'that', "that'll", 'the', 'their', 'theirs',
'them', 'themselves', 'then', 'thence', 'there', 'thereafter', 'thereby', 'therefore', 'therein',
'thereupon', 'these', 'they', 'this', 'those', 'through', 'throughout', 'thru', 'thus', 'to', 'too',
'toward', 'towards', 'under', 'unless', 'until', 'up', 'upon', 'used', 've', 'was', 'wasn', "wasn't",
'we', 'were', 'weren', "weren't", 'what', 'whatever', 'when', 'whence', 'whenever', 'where',
'whereafter', 'whereas', 'whereby', 'wherein', 'whereupon', 'wherever', 'whether', 'which', 'while',
'whither', 'who', 'whoever', 'whole', 'whom', 'whose', 'why', 'with', 'within', 'without', 'won',
"won't", 'would', 'wouldn', "wouldn't", 'y', 'yet', 'you', "you'd", "you'll", "you're", "you've",
'your', 'yours', 'yourself', 'yourselves']
filter_words = set(filter_words)
class MyEvalPrediction(NamedTuple):
prediction_by_knn: Union[np.ndarray, Tuple[np.ndarray]]
prediction_by_cls: Union[np.ndarray, Tuple[np.ndarray]]
prediction_combine: Union[np.ndarray, Tuple[np.ndarray]]
label_ids: np.ndarray
class PredictionOutput(NamedTuple):
predictions: Union[np.ndarray, Tuple[np.ndarray]]
label_ids: Optional[np.ndarray]
metrics: Optional[Dict[str, float]]
def l2norm(x: torch.Tensor):
norm = torch.pow(x, 2).sum(dim=-1, keepdim=True).sqrt()
x = torch.div(x, norm)
return x
class SimpleTrainer:
"""
This Train is simple version for Origin Trainer.
This is to exce the origin contrastive learning.
"""
def __init__(self,
model: Union[PreTrainedModel, torch.nn.Module] = None,
args: TrainingArguments = None,
data_collator: Optional[DataCollator] = None,
train_dataset: Optional[Dataset] = None,
eval_dataset: Optional[Dataset] = None,
test_dataset: Optional[Dataset] = None,
tokenizer: Optional["PreTrainedTokenizerBase"] = None,
number_labels: Optional[int] = None,
model_init: Callable[[], PreTrainedModel] = None,
compute_metrics: Optional[Callable[[MyEvalPrediction], Dict]] = None,
callbacks: Optional[List[TrainerCallback]] = None,
optimizers: Tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None),
):
if args is None:
logger.info("No 'TrainingArgumenets' passed, using the current path as 'output_dir'" )
args = TrainingArguments("tmp_trainer")
self.args = args
set_seed(self.args.seed)
self.number_labels = number_labels
self.model = model
default_collator = default_data_collator if tokenizer is None else DataCollatorWithPadding(tokenizer)
filepath = os.path.join(args.output_dir, 'model_best.pkl')
self.data_collator = data_collator if data_collator is not None else default_collator
self.train_dataset = train_dataset
self.eval_dataset = eval_dataset
self.test_dataset = test_dataset
self.tokenizer = tokenizer
self.optimizer, self.lr_scheduler = optimizers
#self.label_names = default_label_names if self.args.label_names is None else self.args.label_names
self.args.clip = args.clip
self.number_labels = number_labels
self.sharded_dpp = False
self.negative_data = self.create_negative_dataset()
self.negative_keys = list(self.negative_data.keys())
def create_negative_dataset(self):
negative_dataset = {}
data = self.train_dataset
for line in data:
label = int(line["label"])
inputs = line
inputs.pop("original_text")
inputs.pop("sent_id")
inputs.pop("label")
inputs.pop("text")
if label not in negative_dataset.keys():
negative_dataset[label] = [inputs]
else:
negative_dataset[label].append(inputs)
return negative_dataset
def generate_positive_sample(self, label: torch.Tensor):
positive_num = self.args.positive_num # 3
# positive_num = 16
positive_sample = []
for index in range(label.shape[0]):
input_label = int(label[index])
positive_sample.extend(random.sample(self.negative_data[input_label], positive_num))
return self.list_item_to_tensor(positive_sample)
def list_item_to_tensor(self, inputs_list: List[Dict]):
batch_list = {}
for key, value in inputs_list[0].items():
batch_list[key] = []
for inputs in inputs_list:
for key, value in inputs.items():
batch_list[key].append(value)
batch_tensor = {}
for key, value in batch_list.items():
batch_tensor[key] = torch.tensor(value)
return batch_tensor
def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]:
"""
Prepare :obj:`inputs` before feeding them to the model, converting them to tensors if they are not already and
handling potential state.
"""
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
inputs[k] = v.to(self.args.device)
if self.args.past_index >= 0 and self._past is not None:
inputs["mems"] = self._past
return inputs
def _get_train_sampler(self) -> Optional[torch.utils.data.sampler.Sampler]:
if isinstance(self.train_dataset, torch.utils.data.IterableDataset) or not isinstance(
self.train_dataset, collections.abc.Sized
):
return None
elif is_torch_tpu_available():
return get_tpu_sampler(self.train_dataset)
else:
return (
RandomSampler(self.train_dataset)
if self.args.local_rank == -1
else DistributedSampler(self.train_dataset)
)
def get_train_dataloader(self) -> DataLoader:
"""
Returns the training :class:`~torch.utils.data.DataLoader`.
Will use no sampler if :obj:`self.train_dataset` does not implement :obj:`__len__`, a random sampler (adapted
to distributed training if necessary) otherwise.
Subclass and override this method if you want to inject some custom behavior.
"""
if self.train_dataset is None:
raise ValueError("Trainer: training requires a train_dataset.")
train_sampler = self._get_train_sampler()
return DataLoader(
self.train_dataset,
batch_size=self.args.train_batch_size,
sampler=train_sampler,
collate_fn=self.data_collator,
drop_last=self.args.dataloader_drop_last,
num_workers=self.args.dataloader_num_workers,
)
def _get_eval_sampler(self, eval_dataset: Dataset) -> Optional[torch.utils.data.sampler.Sampler]:
if is_torch_tpu_available():
return SequentialDistributedSampler(eval_dataset, num_replicas=xm.xrt_world_size(), rank=xm.get_ordinal())
elif self.args.local_rank != -1:
return SequentialDistributedSampler(eval_dataset)
else:
return SequentialSampler(eval_dataset)
def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
"""
Returns the evaluation :class:`~torch.utils.data.DataLoader`.
Subclass and override this method if you want to inject some custom behavior.
Args:
eval_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
If provided, will override :obj:`self.eval_dataset`. If it is an :obj:`datasets.Dataset`, columns not
accepted by the ``model.forward()`` method are automatically removed. It must implement :obj:`__len__`.
"""
if eval_dataset is None and self.eval_dataset is None:
raise ValueError("Trainer: evaluation requires an eval_dataset.")
elif eval_dataset is not None and not isinstance(eval_dataset, collections.abc.Sized):
raise ValueError("eval_dataset must implement __len__")
elif is_datasets_available() and isinstance(eval_dataset, datasets.Dataset):
self._remove_unused_columns(eval_dataset, description="evaluation")
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
eval_sampler = self._get_eval_sampler(eval_dataset)
return DataLoader(
eval_dataset,
sampler=eval_sampler,
batch_size=self.args.eval_batch_size,
collate_fn=self.data_collator,
drop_last=self.args.dataloader_drop_last,
num_workers=self.args.dataloader_num_workers,
)
def get_test_dataloader(self, test_dataset: Dataset) -> DataLoader:
"""
Returns the test :class:`~torch.utils.data.DataLoader`.
Subclass and override this method if you want to inject some custom behavior.
Args:
test_dataset (:obj:`torch.utils.data.dataset.Dataset`, `optional`):
The test dataset to use. If it is an :obj:`datasets.Dataset`, columns not accepted by the
``model.forward()`` method are automatically removed. It must implement :obj:`__len__`.
"""
if not isinstance(test_dataset, collections.abc.Sized):
raise ValueError("test_dataset must implement __len__")
elif is_datasets_available() and isinstance(test_dataset, datasets.Dataset):
self._remove_unused_columns(test_dataset, description="test")
test_sampler = self._get_eval_sampler(test_dataset)
# We use the same batch_size as for eval.
return DataLoader(
test_dataset,
sampler=test_sampler,
batch_size=self.args.eval_batch_size,
collate_fn=self.data_collator,
drop_last=self.args.dataloader_drop_last,
)
def create_optimizer_and_scheduler(self, num_training_steps: int):
"""
Setup the optimizer and the learning rate scheduler.
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
Trainer's init through :obj:`optimizers`, or subclass and override this method in a subclass.
"""
if self.optimizer is None:
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": self.args.weight_decay,
},
{
"params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
if self.sharded_dpp:
self.optimizer = OSS(
params=optimizer_grouped_parameters,
optim=AdamW,
lr=self.args.learning_rate,
betas=(self.args.adam_beta1, self.args.adam_beta2),
eps=self.args.adam_epsilon,
)
else:
#self.optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self.model.parameters()),lr=self.args.learning_rate,weight_decay=self.args.weight_decay)
self.optimizer = AdamW(
optimizer_grouped_parameters,
lr=self.args.learning_rate,
betas=(self.args.adam_beta1, self.args.adam_beta2),
eps=self.args.adam_epsilon,
)
if self.lr_scheduler is None:
self.lr_scheduler = get_linear_schedule_with_warmup(
self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=num_training_steps
)
def num_examples(self, dataloader: DataLoader) -> int:
"""
Helper to get number of samples in a :class:`~torch.utils.data.DataLoader` by accessing its dataset.
Will raise an exception if the underlying dataset dese not implement method :obj:`__len__`
"""
return len(dataloader.dataset)
def valution_cal(self, model, val_dataloader) -> float:
#Just test whether the model.eval() in selecting model has an impact on the results,
#and the opening model.eval() in selecting models will be better in some cases.
#model.eval()
target =[]
predict = []
for step, inputs in enumerate(val_dataloader):
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
inputs[k] = v.to(self.args.device)
output = model(inputs, mode='validation')
predict += output[0]
target += output[1]
f1 = metrics.f1_score(target, predict, average='macro')
return f1
def train_mocoknn(self, model_path: Optional[str] = None, trial: Union["optuna.Trial", Dict[str, Any]] = None):
"""
Main training entry point.
Args:
model_path (:obj:`str`, `optional`):
Local path to the model if the model to train has been instantiated from a local path. If present,
training will resume from the optimizer/scheduler states loaded here.
trial (:obj:`optuna.Trial` or :obj:`Dict[str, Any]`, `optional`):
The trial run or the hyperparameter dictionary for hyperparameter search.
"""
model = self.model
model.to(self.args.device)
################################################################################################
train_dataloader = self.get_train_dataloader()
valid_loader = self.get_eval_dataloader()
num_update_steps_per_epoch = len(train_dataloader) // self.args.gradient_accumulation_steps
max_steps = math.ceil(self.args.supcont_pre_epoches * num_update_steps_per_epoch)
self.args.warmup_steps = max_steps * 0.1
sup_con_num_train_epochs = self.args.supcont_pre_epoches
self.create_optimizer_and_scheduler(num_training_steps=max_steps)
#tr_loss = torch.tensor(0.0).to(self.args.device)
tr_loss = torch.tensor(0.0)
self._total_loss_scalar = 0.0
self._globalstep_last_logged = 0
best_f1 = 0
global_step = 0
model_best_param_dict = None
for epoch in range(sup_con_num_train_epochs):
epoch_iterator = tqdm(train_dataloader, initial=global_step, desc="Iter (sup_loss)")
model.train()
for step, inputs in enumerate(epoch_iterator):
positive_sample = None
positive_sample = self.generate_positive_sample(inputs["labels"])
positive_sample = self._prepare_inputs(positive_sample)
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
inputs[k] = v.to(self.args.device)
outputs = model(inputs, mode='train', positive_sample=positive_sample)
loss = outputs["loss"] if isinstance(outputs, dict) else outputs[0]
epoch_iterator.set_description('Iter (sup_cont_loss=%5.3f)' % loss.item())
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.clip)
self.optimizer.step()
self.lr_scheduler.step()
#model.zero_grad()
global_step += 1
tr_loss += loss.item()
print('Epoch: [{0}]: Loss {loss:.4f}'.format(epoch, loss=tr_loss / global_step))
cl_loss_name = 'sup_Clearning_loss'
fitlog.add_loss(tr_loss / global_step, name=cl_loss_name, step=epoch)
### Get model performing in valid IND #####
f1 = self.valution_cal(model, valid_loader)
if f1 > best_f1:
#torch.save(model, model_file_path)
model_best_param_dict = copy.deepcopy(model.state_dict())
best_f1 = f1
model.load_state_dict(model_best_param_dict)
###################################################################################################
# ind_pre_epochs
# train_dataloader = self.get_train_dataloader()
# valid_loader = self.get_eval_dataloader()
# best_f1 = 0
# num_update_steps_per_epoch = len(train_dataloader) // self.args.gradient_accumulation_steps
# max_steps = math.ceil(self.args.ind_pre_epoches * num_update_steps_per_epoch)
# ind_con_num_train_epochs = self.args.ind_pre_epoches
#
# ## param need to be init again??
# self.create_optimizer_and_scheduler(num_training_steps=max_steps)
#
# tr_loss = torch.tensor(0.0).to(self.args.device)
# self._total_loss_scalar = 0.0
# self._globalstep_last_logged = 0
#
# #model.zero_grad()
# #for step, inputs in enumerate(train_dataloader):
# # inputs.pop("sent_id")
# # inputs.pop("original_text")
#
# global_step = 0
# model_best_param_dict = None
# for epoch in range(ind_con_num_train_epochs):
# epoch_iterator = tqdm(train_dataloader, initial=global_step, desc="Iter (in_pre_loss)")
# model.train()
# for step, inputs in enumerate(epoch_iterator):
# for k, v in inputs.items():
# if isinstance(v, torch.Tensor):
# inputs[k] = v.to(self.args.device)
#
# loss = model(inputs, stage='in_pre', mode='finetune')
# self.optimizer.zero_grad()
# loss.backward()
# torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.clip)
#
# self.optimizer.step()
# #self.lr_scheduler.step()
# #model.zero_grad()
# global_step += 1
# tr_loss += loss.item()
#
# print('Epoch: [{0}]: Loss {loss:.4f}'.format(epoch, loss=tr_loss / global_step))
# ind_pre_loss_name = 'ind_pre_loss'
# fitlog.add_loss((tr_loss / global_step), name=ind_pre_loss_name, step=epoch)
#
# ### Get model performing best #####
# f1 = self.valution_cal(model, valid_loader)
# if f1 > best_f1:
# #torch.save(model, model_file_path)
# model_best_param_dict = copy.deepcopy(model.state_dict())
# best_f1 = f1
# model.load_state_dict(model_best_param_dict)