-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
386 lines (325 loc) · 14.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import argparse
import os
from collections import defaultdict
from contextlib import nullcontext
from pathlib import Path
import hydra
import numpy as np
import torch
import torch.nn as nn
from accelerate import Accelerator, DistributedDataParallelKwargs
from accelerate.accelerator import ProjectConfiguration
from accelerate.utils import set_seed, tqdm
from datasets import DatasetDict, load_dataset, load_from_disk
from omegaconf import OmegaConf
from torch.utils.data import ConcatDataset, DataLoader
import wandb
from pc_sam.datasets.transforms import Compose
from pc_sam.model.loss import compute_iou
from pc_sam.model.pc_sam import PointCloudSAM
from pc_sam.utils.torch_utils import replace_with_fused_layernorm, worker_init_fn
def build_dataset(cfg):
if os.path.exists(cfg.dataset.path):
keep_in_memory = cfg.get("keep_in_memory", False)
dataset = load_from_disk(cfg.dataset.path, keep_in_memory=keep_in_memory)
split = cfg.dataset.get("split", "train")
dataset = dataset[split]
else:
dataset = load_dataset(**cfg.dataset)
dataset = dataset.rename_columns(
{"xyz": "coords", "rgb": "features", "mask": "gt_masks"}
)
dataset = dataset.select_columns(["coords", "features", "gt_masks"])
dataset.set_transform(Compose(cfg.transforms))
if "repeats" in cfg:
from torch.utils.data import Subset # fmt: skip
dataset = Subset(dataset, list(range(len(dataset))) * cfg.repeats)
return dataset
def build_datasets(cfg):
if "dataset_dict" in cfg:
datasets = DatasetDict()
for key, dataset_cfg in cfg.dataset_dict.items():
datasets[key] = build_dataset(dataset_cfg)
return ConcatDataset(datasets.values())
else:
return build_dataset(cfg)
# NOTE: We separately instantiate each component for fine-grained control.
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--config", type=str, default="large", help="path to config file"
)
parser.add_argument("--config_dir", type=str, default="configs")
args, unknown_args = parser.parse_known_args()
# ---------------------------------------------------------------------------- #
# Load configuration
# ---------------------------------------------------------------------------- #
with hydra.initialize(args.config_dir, version_base=None):
cfg = hydra.compose(config_name=args.config, overrides=unknown_args)
OmegaConf.resolve(cfg)
# print(OmegaConf.to_yaml(cfg))
# Prepare (flat) hyperparameters for logging
hparams = {
"lr": cfg.lr,
"weight_decay": cfg.weight_decay,
"gradient_accumulation_steps": cfg.gradient_accumulation_steps,
"batch_size": cfg.train_dataloader.batch_size * cfg.gradient_accumulation_steps,
}
# Check cuda and cudnn settings
torch.backends.cudnn.benchmark = True
print("flash_sdp_enabled:", torch.backends.cuda.flash_sdp_enabled())
print("mem_efficient_sdp_enabled:", torch.backends.cuda.mem_efficient_sdp_enabled())
print("math_sdp_enabled:", torch.backends.cuda.math_sdp_enabled())
seed = cfg.get("seed", 42)
# ---------------------------------------------------------------------------- #
# Setup model
# ---------------------------------------------------------------------------- #
set_seed(seed)
model: PointCloudSAM = hydra.utils.instantiate(cfg.model)
model.apply(replace_with_fused_layernorm)
# ---------------------------------------------------------------------------- #
# Initialize with pre-trained weights if provided
# ---------------------------------------------------------------------------- #
if cfg.pretrained_ckpt_path:
print("Loading pretrained weight from", cfg.pretrained_ckpt_path)
pretrained = torch.load(cfg.pretrained_ckpt_path)
# Hardcoded for Uni3D
state_dict = {}
for name in pretrained["module"].keys():
if "point_encoder.encoder2trans" in name:
# print(name)
suffix = name[len("point_encoder.encoder2trans.") :]
state_dict[f"patch_proj.{suffix}"] = pretrained["module"][name]
# print(name, pretrained["module"][name].shape)
if "point_encoder.pos_embed" in name:
# print(name)
suffix = name[len("point_encoder.pos_embed.") :]
state_dict[f"pos_embed.{suffix}"] = pretrained["module"][name]
if "point_encoder.visual" in name:
# print(name)
suffix = name[len("point_encoder.visual.") :]
state_dict[f"transformer.{suffix}"] = pretrained["module"][name]
missing_keys = model.pc_encoder.load_state_dict(state_dict, strict=False)
print(missing_keys)
# ---------------------------------------------------------------------------- #
# Setup dataloaders
# ---------------------------------------------------------------------------- #
train_dataset_cfg = hydra.utils.instantiate(cfg.train_dataset)
train_dataset = build_datasets(train_dataset_cfg)
train_dataloader = DataLoader(
train_dataset,
**cfg.train_dataloader,
worker_init_fn=worker_init_fn,
generator=torch.Generator().manual_seed(seed),
)
if cfg.val_freq > 0:
val_dataset_cfg = hydra.utils.instantiate(cfg.val_dataset)
val_dataset = build_dataset(val_dataset_cfg)
val_dataloader = DataLoader(
val_dataset, **cfg.val_dataloader, worker_init_fn=worker_init_fn
)
# ---------------------------------------------------------------------------- #
# Setup optimizer
# ---------------------------------------------------------------------------- #
params = []
for name, module in model.named_children():
# NOTE: Different learning rates can be set for different modules
if name == "pc_encoder":
params += [{"params": module.parameters(), "lr": cfg.lr}]
else:
params += [{"params": module.parameters(), "lr": cfg.lr}]
optimizer = torch.optim.AdamW(params, lr=cfg.lr, weight_decay=cfg.weight_decay)
scheduler = hydra.utils.instantiate(cfg.scheduler, optimizer=optimizer)
# criterion = Criterion()
criterion = hydra.utils.instantiate(cfg.loss)
# ---------------------------------------------------------------------------- #
# Initialize accelerator
# ---------------------------------------------------------------------------- #
project_config = ProjectConfiguration(
cfg.project_dir, automatic_checkpoint_naming=True, total_limit=1
)
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
project_config=project_config,
kwargs_handlers=[ddp_kwargs],
log_with=cfg.log_with,
)
model, optimizer, train_dataloader, scheduler = accelerator.prepare(
model, optimizer, train_dataloader, scheduler
)
if cfg.val_freq > 0:
val_dataloader = accelerator.prepare(val_dataloader)
accelerator.print(OmegaConf.to_yaml(cfg))
if cfg.log_with:
accelerator.init_trackers(
project_name=cfg.get("project_name", "pointcloud-sam"),
config=hparams,
init_kwargs={"wandb": {"name": cfg.run_name}},
)
if cfg.log_with == "wandb":
wandb_tracker = accelerator.get_tracker("wandb")
try:
file_path = os.path.join(wandb_tracker.run.dir, "full_config.yaml")
with open(file_path, "w") as f:
f.write(OmegaConf.to_yaml(cfg))
wandb_tracker.run.save(file_path)
except:
pass
# Define validation function
@torch.no_grad()
def validate():
model.eval()
epoch_ious = defaultdict(list)
if cfg.log_with == "wandb":
pbar = tqdm(total=len(val_dataloader), miniters=10, maxinterval=60)
else:
pbar = tqdm(total=len(val_dataloader))
for data in val_dataloader:
outputs = model(**data, is_eval=True)
gt_masks = data["gt_masks"].flatten(0, 1)
# Update metrics
# for i_iter in [0, len(outputs) - 1]:
for i_iter in range(len(outputs)):
if i_iter == 0:
all_masks = outputs[0]["masks"] # [B*M, C, N]
all_ious = compute_iou(
all_masks, gt_masks.unsqueeze(1).expand_as(all_masks)
)
best_iou = all_ious.max(dim=1).values
epoch_ious["best"].extend(best_iou.tolist())
iou = compute_iou(outputs[i_iter]["prompt_masks"], gt_masks)
epoch_ious[i_iter].extend(iou.tolist())
metrics = {
f"iou({i_iter})": np.mean(iou) for i_iter, iou in epoch_ious.items()
}
sub_metrics = {
f"iou({i_iter})": metrics[f"iou({i_iter})"]
for i_iter in [0, len(outputs) - 1]
}
pbar.set_postfix(sub_metrics)
pbar.update(1)
pbar.close()
return metrics
# ---------------------------------------------------------------------------- #
# Training loop
# ---------------------------------------------------------------------------- #
step = 0 # Number of batch steps
global_step = 0 # Number of optimization steps
start_epoch = 0
# Restore state
ckpt_dir = Path(accelerator.project_dir, "checkpoints")
if ckpt_dir.exists():
accelerator.load_state()
global_step = scheduler.scheduler.last_epoch // accelerator.state.num_processes
get_epoch_fn = lambda x: int(x.name.split("_")[-1])
last_ckpt_dir = sorted(ckpt_dir.glob("checkpoint_*"), key=get_epoch_fn)[-1]
start_epoch = get_epoch_fn(last_ckpt_dir) + 1
accelerator.project_configuration.iteration = start_epoch
for epoch in range(start_epoch, cfg.max_epochs):
model.train()
if cfg.log_with == "wandb":
# Since wandb records stdout, decrease the frequency of tqdm updates
pbar = tqdm(total=len(train_dataloader), miniters=10, maxinterval=60)
else:
pbar = tqdm(total=len(train_dataloader))
for data in train_dataloader:
flag = (step + 1) % cfg.gradient_accumulation_steps == 0
ctx = nullcontext if flag else accelerator.no_sync
# https://huggingface.co/docs/accelerate/en/concept_guides/gradient_synchronization#solving-the-slowdown-problem
with ctx(model):
# NOTE: `forward` method needs to be implemented for `accelerate` to apply autocast
outputs = model(**data)
gt_masks = data["gt_masks"].flatten(0, 1) # [B*M, N]
loss, aux = criterion(outputs, gt_masks)
accelerator.backward(loss / cfg.gradient_accumulation_steps)
if flag:
if cfg.max_grad_value:
nn.utils.clip_grad.clip_grad_value_(
model.parameters(), cfg.max_grad_value
)
optimizer.step()
optimizer.zero_grad()
scheduler.step()
# Compute metrics
with torch.no_grad():
metrics = dict(loss=loss.item())
for i_iter in [0, len(outputs) - 1]:
# pred_masks = outputs[i_iter]["prompt_masks"] > 0
pred_masks = aux[i_iter]["best_masks"] > 0
is_correct = pred_masks == gt_masks
acc = is_correct.float().mean()
fg_acc = is_correct[gt_masks == 1].float().mean()
bg_acc = is_correct[gt_masks == 0].float().mean()
metrics[f"acc({i_iter})"] = acc.item()
metrics[f"fg_acc({i_iter})"] = fg_acc.item()
metrics[f"bg_acc({i_iter})"] = bg_acc.item()
iou = aux[i_iter]["iou"].mean()
metrics[f"iou({i_iter})"] = iou.item()
# Loss breakdown
for k, v in aux[i_iter].items():
if k.startswith("loss"):
metrics[f"{k}({i_iter})"] = v.item()
# Logging with tqdm
sub_metrics = {
k: v
for k, v in metrics.items()
if k.startswith("acc") or k.startswith("iou")
}
pbar.set_postfix(sub_metrics)
# Visualize with wandb
if (
cfg.log_with == "wandb"
and (global_step + 1) % (cfg.get("vis_freq", 1000)) == 0
):
pcds = get_wandb_object_3d(
data["coords"],
data["features"],
gt_masks,
[aux[0]["best_masks"] > 0, aux[-1]["best_masks"] > 0],
[outputs[0]["prompt_coords"], outputs[-1]["prompt_coords"]],
[outputs[0]["prompt_labels"], outputs[-1]["prompt_labels"]],
)
metrics["pcd"] = pcds
if cfg.log_with:
accelerator.log(metrics, step=global_step)
global_step += 1
pbar.update(1)
step += 1
if global_step >= cfg.max_steps:
break
pbar.close()
# Save state
if (epoch + 1) % cfg.get("save_freq", 1) == 0:
accelerator.save_state()
if cfg.val_freq > 0 and (epoch + 1) % cfg.val_freq == 0:
torch.cuda.empty_cache()
with accelerator.no_sync(model):
metrics = validate()
torch.cuda.empty_cache()
if cfg.log_with:
metrics = {("val/" + k): v for k, v in metrics.items()}
accelerator.log(metrics, step=global_step)
if global_step >= cfg.max_steps:
break
accelerator.end_training()
@torch.no_grad()
def get_wandb_object_3d(xyz, rgb, gt_masks, pred_masks, prompt_coords, prompt_labels):
pcds = []
xyz = xyz[0].cpu().numpy() # [N, 3]
rgb = (rgb[0].cpu().numpy() * 0.5 + 0.5) * 255 # [N, 3]
gt_mask = gt_masks[0].cpu().numpy() # [N]
input_pcd = np.concatenate([xyz, rgb], axis=1)
pcds.append(wandb.Object3D(input_pcd))
gt_pcd = np.concatenate([xyz, gt_mask[:, None]], axis=1)
pcds.append(wandb.Object3D(gt_pcd))
# Only visualize the first sample
for i, pred_mask in enumerate(pred_masks):
pred_mask = pred_mask[0].cpu().numpy()
# pred_pcd = np.concatenate([xyz, pred_mask[:, None]], axis=1)
xyz2 = np.concatenate([xyz, prompt_coords[i][0].cpu().numpy()])
pred_mask = np.concatenate([pred_mask, prompt_labels[i][0].cpu().numpy() + 2])
pred_pcd = np.concatenate([xyz2, pred_mask[:, None]], axis=1)
pcds.append(wandb.Object3D(pred_pcd))
return pcds
if __name__ == "__main__":
main()