-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_referit3d.py
269 lines (228 loc) · 13 KB
/
train_referit3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#!/usr/bin/env python
# coding: utf-8
import torch
import tqdm
import time
import warnings
import os.path as osp
import torch.nn as nn
from torch import optim
from termcolor import colored
# ## might be related to the memory issue https://github.com/referit3d/referit3d/issues/5
# ## A temp solution is to add at evlauation mode to avoid "received 0 items of ancdata" (uncomment next line in eval)
# torch.multiprocessing.set_sharing_strategy('file_system')
from referit3d.in_out.arguments import parse_arguments
from referit3d.in_out.neural_net_oriented import load_scan_related_data, load_referential_data
from referit3d.in_out.neural_net_oriented import compute_auxiliary_data, trim_scans_per_referit3d_data
from referit3d.in_out.pt_datasets.listening_dataset import make_data_loaders
from referit3d.utils import set_gpu_to_zero_position, create_logger, seed_training_code
from referit3d.utils.tf_visualizer import Visualizer
from referit3d.models.referit3d_net import instantiate_referit3d_net
from referit3d.models.referit3d_net_utils import single_epoch_train, evaluate_on_dataset
from referit3d.models.utils import load_state_dicts, save_state_dicts
from referit3d.analysis.deepnet_predictions import analyze_predictions
from referit3d.utils.scheduler import GradualWarmupScheduler
if __name__ == '__main__':
def log_train_test_information():
"""Helper logging function.
Note uses "global" variables defined below.
"""
logger.info('Epoch:{}'.format(epoch))
for phase in ['train', 'test']:
if phase == 'train':
meters = train_meters
else:
meters = test_meters
info = '{}: Total-Loss {:.4f}, Listening-Acc {:.4f}'.format(phase,
meters[phase + '_total_loss'],
meters[phase + '_referential_acc'])
if args.obj_cls_alpha > 0:
info += ', Object-Clf-Acc: {:.4f}'.format(meters[phase + '_object_cls_acc'])
if args.lang_cls_alpha > 0:
info += ', Text-Clf-Acc: {:.4f}'.format(meters[phase + '_txt_cls_acc'])
logger.info(info)
logger.info('{}: Epoch-time {:.3f}'.format(phase, timings[phase]))
logger.info('Best so far {:.3f} (@epoch {})'.format(best_test_acc, best_test_epoch))
# Parse arguments
args = parse_arguments()
if args.context_2d!='unaligned':
args.mmt_mask = None
print('not in unaligned mode, set mmt-mask to None!\n')
# Prepare GPU environment
set_gpu_to_zero_position(args.gpu) # Pnet++ seems to work only at "gpu:0"
device = torch.device('cuda')
seed_training_code(args.random_seed,strict=True)
# Read the scan related information
all_scans_in_dict, scans_split, class_to_idx = load_scan_related_data(args.scannet_file)
# Read the linguistic data of ReferIt3D
referit_data = load_referential_data(args, args.referit3D_file, scans_split)
# Prepare data & compute auxiliary meta-information.
all_scans_in_dict = trim_scans_per_referit3d_data(referit_data, all_scans_in_dict)
mean_rgb, vocab = compute_auxiliary_data(referit_data, all_scans_in_dict, args)
data_loaders = make_data_loaders(args, referit_data, vocab, class_to_idx, all_scans_in_dict, mean_rgb, seed=args.random_seed) ## seed loader workers
# Losses:
criteria = dict()
# Referential, "find the object in the scan" loss
if args.s_vs_n_weight is not None: # TODO - move to a better place
assert args.augment_with_sr3d is not None
ce = nn.CrossEntropyLoss(reduction='none').to(device)
s_vs_n_weight = args.s_vs_n_weight
def weighted_ce(logits, batch):
loss_per_example = ce(logits, batch['target_pos'])
sr3d_mask = ~batch['is_nr3d']
weights = torch.ones(loss_per_example.shape).to(device)
weights[sr3d_mask] = s_vs_n_weight
loss_per_example = loss_per_example * weights
loss = loss_per_example.sum() / len(loss_per_example)
return loss
criteria['logits'] = weighted_ce
else:
criteria['logits'] = nn.CrossEntropyLoss().to(device)
criteria['logits_nondec'] = nn.CrossEntropyLoss(reduction='none').to(device)
# Object-type classification
if args.obj_cls_alpha > 0:
reduction = 'mean' if args.s_vs_n_weight is None else 'none'
criteria['class_logits'] = nn.CrossEntropyLoss(ignore_index=class_to_idx['pad'],reduction=reduction).to(device)
# Target-in-language guessing
if args.lang_cls_alpha > 0:
reduction = 'mean' if args.s_vs_n_weight is None else 'none'
criteria['lang_logits'] = nn.CrossEntropyLoss(reduction=reduction).to(device)
# Prepare the Listener
n_classes = len(class_to_idx) - 1 # -1 to ignore the <pad> class
pad_idx = class_to_idx['pad']
model = instantiate_referit3d_net(args, vocab, n_classes).to(device)
same_backbone_lr = False
if same_backbone_lr:
optimizer = optim.Adam(model.parameters(), lr=args.init_lr)
else:
backbone_name = []
if args.transformer:
backbone_name.append('text_bert.') ## exclude text_bert_out_linear
# backbone_name.append('object_encoder.')
# backbone_name.append('cnt_object_encoder.')
backbone_param, rest_param = [], []
for kv in model.named_parameters():
isbackbone = [int(key in kv[0]) for key in backbone_name]
if sum(isbackbone+[0]):
backbone_param.append(kv[1])
else:
rest_param.append(kv[1])
optimizer = optim.Adam([{'params': rest_param},
{'params': backbone_param, 'lr': args.init_lr/10.}], lr=args.init_lr)
sum_backbone = sum([param.nelement() for param in backbone_param])
sum_fusion = sum([param.nelement() for param in rest_param])
sum_all = sum([param.nelement() for param in model.parameters()])
print('backbone, fusion module parameters:', sum_backbone, sum_fusion, sum_all)
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.65,
patience=5, verbose=True)
if args.patience==args.max_train_epochs:
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[25,40,50,60,70,80,90], gamma=0.65) ## custom2
if args.max_train_epochs==120: lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[25,40,55,70,85,100], gamma=0.5) ## custom3-120ep
if args.warmup:
scheduler_warmup = GradualWarmupScheduler(optimizer, multiplier=1, total_epoch=5, after_scheduler=lr_scheduler)
optimizer.zero_grad() ## this zero gradient update is needed to avoid a warning message, issue #8.
optimizer.step()
start_training_epoch = 1
best_test_acc = -1
best_test_epoch = -1
no_improvement = 0
if args.resume_path:
warnings.warn('Resuming assumes that the BEST per-val model is loaded!')
# perhaps best_test_acc, best_test_epoch, best_test_epoch = unpickle...
loaded_epoch = load_state_dicts(args.resume_path, map_location=device, model=model)
print('Loaded a model stopped at epoch: {}.'.format(loaded_epoch))
if not args.fine_tune:
print('Loaded a model that we do NOT plan to fine-tune.')
load_state_dicts(args.resume_path, optimizer=optimizer, lr_scheduler=lr_scheduler)
start_training_epoch = loaded_epoch + 1
best_test_epoch = loaded_epoch
best_test_acc = lr_scheduler.best
print('Loaded model had {} test-accuracy in the corresponding dataset used when trained.'.format(
best_test_acc))
else:
print('Parameters that do not allow gradients to be back-propped:')
ft_everything = True
for name, param in model.named_parameters():
if not param.requires_grad:
print(name)
exist = False
if ft_everything:
print('None, all wil be fine-tuned')
# if you fine-tune the previous epochs/accuracy are irrelevant.
dummy = args.max_train_epochs + 1 - start_training_epoch
print('Ready to *fine-tune* the model for a max of {} epochs'.format(dummy))
if args.pretrain_path:
load_model = torch.load(args.pretrain_path)
pretrained_dict = load_model['model']
model_dict = model.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
assert (len([k for k, v in pretrained_dict.items()])!=0)
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
print("=> loaded pretrain model at {}"
.format(args.pretrain_path))
if 'best' in load_model['lr_scheduler']:
print('Loaded model had {} test-accuracy in the corresponding dataset used when trained.'.format(
load_model['lr_scheduler']['best']))
# Training.
if args.mode == 'train':
train_vis = Visualizer(args.tensorboard_dir)
logger = create_logger(args.log_dir)
logger.info('Starting the training. Good luck!')
eval_acc = 0.
with tqdm.trange(start_training_epoch, args.max_train_epochs + 1, desc='epochs') as bar:
timings = dict()
for epoch in bar:
# if args.warmup: lr_scheduler.step(metrics=eval_acc) ## step no longer take epoch in after 1.4.0
if args.warmup: scheduler_warmup.step(epoch=epoch, metrics=eval_acc) ## using the previous epoch's metrics
print('lr:', epoch, optimizer.param_groups[0]['lr'], optimizer.param_groups[1]['lr'])
# Train:
tic = time.time()
train_meters = single_epoch_train(model, data_loaders['train'], criteria, optimizer,
device, pad_idx, args=args, epoch=epoch)
toc = time.time()
timings['train'] = (toc - tic) / 60
# Evaluate:
tic = time.time()
test_meters = evaluate_on_dataset(model, data_loaders['test'], criteria, device, pad_idx, args=args)
toc = time.time()
timings['test'] = (toc - tic) / 60
eval_acc = test_meters['test_referential_acc']
# if not args.warmup: lr_scheduler.step(metrics=eval_acc) ## step no longer take epoch in after 1.4.0
if not args.warmup: lr_scheduler.step(epoch=epoch, metrics=eval_acc)
if best_test_acc < eval_acc:
logger.info(colored('Test accuracy, improved @epoch {}'.format(epoch), 'green'))
best_test_acc = eval_acc
best_test_epoch = epoch
# Save the model (overwrite the best one)
save_state_dicts(osp.join(args.checkpoint_dir, 'best_model.pth'),
epoch, model=model, optimizer=optimizer, lr_scheduler=lr_scheduler)
no_improvement = 0
else:
no_improvement += 1
logger.info(colored('Test accuracy, did not improve @epoch {}'.format(epoch), 'red'))
log_train_test_information()
train_meters.update(test_meters)
train_vis.log_scalars({k: v for k, v in train_meters.items() if '_acc' in k}, step=epoch,
main_tag='acc')
train_vis.log_scalars({k: v for k, v in train_meters.items() if '_loss' in k},
step=epoch, main_tag='loss')
bar.refresh()
if no_improvement == args.patience:
logger.warning(colored('Stopping the training @epoch-{} due to lack of progress in test-accuracy '
'boost (patience hit {} epochs)'.format(epoch, args.patience),
'red', attrs=['bold', 'underline']))
break
with open(osp.join(args.checkpoint_dir, 'final_result.txt'), 'w') as f_out:
msg = ('Best accuracy: {:.4f} (@epoch {})'.format(best_test_acc, best_test_epoch))
f_out.write(msg)
logger.info('Finished training successfully. Good job!')
elif args.mode == 'evaluate':
meters = evaluate_on_dataset(model, data_loaders['test'], criteria, device, pad_idx, args=args)
print('Reference-Accuracy: {:.4f}'.format(meters['test_referential_acc']))
print('Object-Clf-Accuracy: {:.4f}'.format(meters['test_object_cls_acc']))
print('Text-Clf-Accuracy {:.4f}:'.format(meters['test_txt_cls_acc']))
out_file = osp.join(args.checkpoint_dir, 'test_result.txt')
res = analyze_predictions(model, data_loaders['test'].dataset, class_to_idx, pad_idx, device,
args, out_file=out_file)
print(res)