-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubtrain_64.py
78 lines (62 loc) · 1.98 KB
/
subtrain_64.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import numpy as np
from numpy import genfromtxt
from PIL import Image
import keras
from keras.optimizers import Adam
from keras.models import load_model
import vgg11
import time
import os
# MODEL = 'sub_model_001.h5'
# NEWMODEL = 'my_model_002.h5'
def scale(x_train):
x_train = x_train.astype(float)
x_train /= 255.0
mean = np.mean(x_train)
x_train -= mean
return x_train
start_time = time.time()
# ========== process image data into csv file ==========
x_train = np.zeros((12759, 64*64)).astype(int)
y_train = np.zeros((12759)).astype(int)
print "loading data..."
path = "64/"
i = 0
for filename in os.listdir(path):
img = Image.open(path+filename)
x_train[i] = img.getdata()
token = filename.split("_")
y_train[i] = int(token[0])
i += 1
print i
print "saving data..."
np.savetxt('x_sub_64.csv', x_train, fmt='%d', delimiter=',')
np.savetxt('y_sub_64.csv', y_train, fmt='%d', delimiter=',')
# ========== process image data into csv file ==========
print "--- %s seconds ---" % (time.time() - start_time)
exit()
print "loading data..."
x_train = genfromtxt("x_sub_64.csv", delimiter=',')
y_train = genfromtxt("y_sub_64.csv", delimiter=',')
x_train = scale(x_train)
x_train = x_train.reshape((12759, 64, 64, 1))
y_train = keras.utils.to_categorical(y_train, 13)
print "training..."
# build vgg11 model
# input_shape = (64, 64, 1)
# model = vgg11.build_model(input_shape)
MODEL = "subs_model_009.h5"
print MODEL
model = load_model(MODEL)
# training and testing
# adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0.0)
# model.compile(loss='categorical_crossentropy', optimizer=adam, metrics=['accuracy'])
for i in range(10):
history = model.fit(x_train, y_train, batch_size=128, epochs=5, validation_split=0.1)
# save trained model for future usage
model.save("subs_model_01" + str(i) + ".h5")
# evaluate model
# score = model.evaluate(x_test, y_test)
# print('test loss: ', score[0])
# print('test accuracy: ', score[1])
print "--- %s seconds ---" % (time.time() - start_time)