-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathnocs_eval_utils.py
executable file
·895 lines (764 loc) · 35.7 KB
/
nocs_eval_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
"""
Evaluation-related codes are modified from
https://github.com/hughw19/NOCS_CVPR2019
"""
import logging
import os
import math
import cv2
import numpy as np
import matplotlib.pyplot as plt
import _pickle as cPickle
from numpy.core.fromnumeric import size
from tqdm import tqdm
from simnet.lib import camera
def setup_logger(logger_name, log_file, level=logging.INFO):
logger = logging.getLogger(logger_name)
formatter = logging.Formatter('%(asctime)s : %(message)s')
fileHandler = logging.FileHandler(log_file, mode='a')
fileHandler.setFormatter(formatter)
logger.setLevel(level)
logger.addHandler(fileHandler)
streamHandler = logging.StreamHandler()
streamHandler.setFormatter(formatter)
logger.addHandler(streamHandler)
return logger
def load_obj(path_to_file):
""" Load obj file.
Args:
path_to_file: path
Returns:
vertices: ndarray
faces: ndarray, index of triangle vertices
"""
vertices = []
faces = []
with open(path_to_file, 'r') as f:
for line in f:
if line[:2] == 'v ':
vertex = line[2:].strip().split(' ')
vertex = [float(xyz) for xyz in vertex]
vertices.append(vertex)
elif line[0] == 'f':
face = line[1:].replace('//', '/').strip().split(' ')
face = [int(idx.split('/')[0])-1 for idx in face]
faces.append(face)
else:
continue
vertices = np.asarray(vertices)
faces = np.asarray(faces)
return vertices, faces
def create_sphere():
# 642 verts, 1280 faces,
verts, faces = load_obj('assets/sphere_mesh_template.obj')
return verts, faces
def random_point(face_vertices):
""" Sampling point using Barycentric coordiante.
"""
r1, r2 = np.random.random(2)
sqrt_r1 = np.sqrt(r1)
point = (1 - sqrt_r1) * face_vertices[0, :] + \
sqrt_r1 * (1 - r2) * face_vertices[1, :] + \
sqrt_r1 * r2 * face_vertices[2, :]
return point
def pairwise_distance(A, B):
""" Compute pairwise distance of two point clouds.point
Args:
A: n x 3 numpy array
B: m x 3 numpy array
Return:
C: n x m numpy array
"""
diff = A[:, :, None] - B[:, :, None].T
C = np.sqrt(np.sum(diff**2, axis=1))
return C
def uniform_sample(vertices, faces, n_samples, with_normal=False):
""" Sampling points according to the area of mesh surface.
"""
sampled_points = np.zeros((n_samples, 3), dtype=float)
normals = np.zeros((n_samples, 3), dtype=float)
faces = vertices[faces]
vec_cross = np.cross(faces[:, 1, :] - faces[:, 0, :],
faces[:, 2, :] - faces[:, 0, :])
face_area = 0.5 * np.linalg.norm(vec_cross, axis=1)
cum_area = np.cumsum(face_area)
for i in range(n_samples):
face_id = np.searchsorted(cum_area, np.random.random() * cum_area[-1])
sampled_points[i] = random_point(faces[face_id, :, :])
normals[i] = vec_cross[face_id]
normals = normals / np.linalg.norm(normals, axis=1, keepdims=True)
if with_normal:
sampled_points = np.concatenate((sampled_points, normals), axis=1)
return sampled_points
def farthest_point_sampling(points, n_samples):
""" Farthest point sampling.
"""
selected_pts = np.zeros((n_samples,), dtype=int)
dist_mat = pairwise_distance(points, points)
# start from first point
pt_idx = 0
dist_to_set = dist_mat[:, pt_idx]
for i in range(n_samples):
selected_pts[i] = pt_idx
dist_to_set = np.minimum(dist_to_set, dist_mat[:, pt_idx])
pt_idx = np.argmax(dist_to_set)
return selected_pts
def sample_points_from_mesh(path, n_pts, with_normal=False, fps=False, ratio=2):
""" Uniformly sampling points from mesh model.
Args:
path: path to OBJ file.
n_pts: int, number of points being sampled.
with_normal: return points with normal, approximated by mesh triangle normal
fps: whether to use fps for post-processing, default False.
ratio: int, if use fps, sample ratio*n_pts first, then use fps to sample final output.
Returns:
points: n_pts x 3, n_pts x 6 if with_normal = True
"""
vertices, faces = load_obj(path)
if fps:
points = uniform_sample(vertices, faces, ratio*n_pts, with_normal)
pts_idx = farthest_point_sampling(points[:, :3], n_pts)
points = points[pts_idx]
else:
points = uniform_sample(vertices, faces, n_pts, with_normal)
return points
def load_depth(depth_path):
""" Load depth image from img_path. """
# depth_path = img_path + '_depth.png'
depth = cv2.imread(depth_path, -1)
if len(depth.shape) == 3:
# This is encoded depth image, let's convert
# NOTE: RGB is actually BGR in opencv
depth16 = depth[:, :, 1]*256 + depth[:, :, 2]
depth16 = np.where(depth16==32001, 0, depth16)
depth16 = depth16.astype(np.uint16)
elif len(depth.shape) == 2 and depth.dtype == 'uint16':
depth16 = depth
else:
assert False, '[ Error ]: Unsupported depth type.'
return depth16
def get_bbox(bbox):
""" Compute square image crop window. """
y1, x1, y2, x2 = bbox
img_width = 480
img_length = 640
window_size = (max(y2-y1, x2-x1) // 40 + 1) * 40
window_size = min(window_size, 440)
center = [(y1 + y2) // 2, (x1 + x2) // 2]
rmin = center[0] - int(window_size / 2)
rmax = center[0] + int(window_size / 2)
cmin = center[1] - int(window_size / 2)
cmax = center[1] + int(window_size / 2)
if rmin < 0:
delt = -rmin
rmin = 0
rmax += delt
if cmin < 0:
delt = -cmin
cmin = 0
cmax += delt
if rmax > img_width:
delt = rmax - img_width
rmax = img_width
rmin -= delt
if cmax > img_length:
delt = cmax - img_length
cmax = img_length
cmin -= delt
return rmin, rmax, cmin, cmax
def compute_sRT_errors(sRT1, sRT2):
"""
Args:
sRT1: [4, 4]. homogeneous affine transformation
sRT2: [4, 4]. homogeneous affine transformation
Returns:
R_error: angle difference in degree,
T_error: Euclidean distance
IoU: relative scale error
"""
try:
assert np.array_equal(sRT1[3, :], sRT2[3, :])
assert np.array_equal(sRT1[3, :], np.array([0, 0, 0, 1]))
except AssertionError:
print(sRT1[3, :], sRT2[3, :])
s1 = np.cbrt(np.linalg.det(sRT1[:3, :3]))
R1 = sRT1[:3, :3] / s1
T1 = sRT1[:3, 3]
s2 = np.cbrt(np.linalg.det(sRT2[:3, :3]))
R2 = sRT2[:3, :3] / s2
T2 = sRT2[:3, 3]
R12 = R1 @ R2.transpose()
R_error = np.arccos(np.clip((np.trace(R12)-1)/2, -1.0, 1.0)) * 180 / np.pi
T_error = np.linalg.norm(T1 - T2)
IoU = np.abs(s1 - s2) / s2
return R_error, T_error, IoU
############################################################
# Evaluation
############################################################
def get_3d_bbox(size, shift=0):
"""
Args:
size: [3] or scalar
shift: [3] or scalar
Returns:
bbox_3d: [3, N]
"""
# bbox_3d = np.array([[+size[0] / 2, +size[1] / 2, +size[2] / 2],
# [+size[0] / 2, +size[1] / 2, -size[2] / 2],
# [-size[0] / 2, +size[1] / 2, +size[2] / 2],
# [-size[0] / 2, +size[1] / 2, -size[2] / 2],
# [+size[0] / 2, -size[1] / 2, +size[2] / 2],
# [+size[0] / 2, -size[1] / 2, -size[2] / 2],
# [-size[0] / 2, -size[1] / 2, +size[2] / 2],
# [-size[0] / 2, -size[1] / 2, -size[2] / 2]]) + shift
bbox_3d = np.array([[0,0,0],
[-size[0] / 2, -size[1] / 2, -size[2] / 2],
[-size[0] / 2, -size[1] / 2, +size[2] / 2],
[-size[0] / 2, +size[1] / 2, -size[2] / 2],
[-size[0] / 2, +size[1] / 2, +size[2] / 2],
[+size[0] / 2, -size[1] / 2, -size[2] / 2],
[+size[0] / 2, -size[1] / 2, +size[2] / 2],
[+size[0] / 2, +size[1] / 2, -size[2] / 2],
[+size[0] / 2, +size[1] / 2, +size[2] / 2]]) + shift
bbox_3d = bbox_3d.transpose()
return bbox_3d
# def transform_coordinates_3d(coordinates, sRT):
# """
# Args:
# coordinates: [3, N]
# sRT: [4, 4]
# Returns:
# new_coordinates: [3, N]
# """
# assert coordinates.shape[0] == 3
# coordinates = np.vstack([coordinates, np.ones((1, coordinates.shape[1]), dtype=np.float32)])
# new_coordinates = sRT @ coordinates
# new_coordinates = new_coordinates[:3, :] / new_coordinates[3, :]
# return new_coordinates
def transform_coordinates_3d(coordinates, RT):
"""
Args:
coordinates: [3, N]
sRT: [4, 4]
Returns:
new_coordinates: [3, N]
"""
# assert coordinates.shape[0] == 3
# coordinates = np.vstack([coordinates, np.ones((1, coordinates.shape[1]), dtype=np.float32)])
# new_coordinates = sRT @ coordinates
# new_coordinates = new_coordinates[:3, :] / new_coordinates[3, :]
unit_box_homopoints = camera.convert_points_to_homopoints(coordinates)
# morphed_box_homopoints = pose.camera_T_object @ (pose.scale_matrix @ unit_box_homopoints)
morphed_box_homopoints = RT @ unit_box_homopoints
new_coordinates = camera.convert_homopoints_to_points(morphed_box_homopoints)
return new_coordinates
def compute_3d_IoU(sRT_1, sRT_2, size_1, size_2, class_name_1, class_name_2, handle_visibility):
""" Computes IoU overlaps between two 3D bboxes. """
def asymmetric_3d_iou(sRT_1, sRT_2, size_1, size_2):
# print("sizes", size_1, size_2)
# print("SRT", sRT_1, sRT_1)
noc_cube_1 = get_3d_bbox(size_1, 0)
bbox_3d_1 = transform_coordinates_3d(noc_cube_1, sRT_1)
noc_cube_2 = get_3d_bbox(size_2, 0)
bbox_3d_2 = transform_coordinates_3d(noc_cube_2, sRT_2)
# print("box 3d 1", bbox_3d_1)
# print("box 3d 2", bbox_3d_2)
bbox_1_max = np.amax(bbox_3d_1, axis=0)
bbox_1_min = np.amin(bbox_3d_1, axis=0)
bbox_2_max = np.amax(bbox_3d_2, axis=0)
bbox_2_min = np.amin(bbox_3d_2, axis=0)
overlap_min = np.maximum(bbox_1_min, bbox_2_min)
overlap_max = np.minimum(bbox_1_max, bbox_2_max)
# intersections and union
if np.amin(overlap_max - overlap_min) < 0:
intersections = 0
else:
intersections = np.prod(overlap_max - overlap_min)
union = np.prod(bbox_1_max - bbox_1_min) + np.prod(bbox_2_max - bbox_2_min) - intersections
# print("overlap_max: ", overlap_max)
# print("overlap_min: ", overlap_min)
# print("insterection, union", intersections, union)
overlaps = intersections / union
return overlaps
if sRT_1 is None or sRT_2 is None:
return -1
if (class_name_1 in ['bottle', 'bowl', 'can'] and class_name_1 == class_name_2) or \
(class_name_1 == 'mug' and class_name_1 == class_name_2 and handle_visibility==0):
def y_rotation_matrix(theta):
return np.array([[ np.cos(theta), 0, np.sin(theta), 0],
[ 0, 1, 0, 0],
[-np.sin(theta), 0, np.cos(theta), 0],
[ 0, 0, 0, 1]])
n = 20
max_iou = 0
for i in range(n):
rotated_RT_1 = sRT_1 @ y_rotation_matrix(2 * math.pi * i / float(n))
max_iou = max(max_iou, asymmetric_3d_iou(rotated_RT_1, sRT_2, size_1, size_2))
else:
max_iou = asymmetric_3d_iou(sRT_1, sRT_2, size_1, size_2)
return max_iou
def compute_IoU_matches(gt_class_ids, gt_sRT, gt_size, gt_handle_visibility,
pred_class_ids, pred_sRT, pred_size,
synset_names, iou_3d_thresholds, score_threshold=0):
""" Find matches between NOCS prediction and ground truth instances.
Args:
size: 3D bounding box size
bboxes: 2D bounding boxes
Returns:
gt_matches: 2-D array. For each GT box it has the index of the matched predicted box.
pred_matches: 2-D array. For each predicted box, it has the index of the matched ground truth box.
overlaps: IoU overlaps.
indices:
"""
num_pred = len(pred_class_ids)
num_gt = len(gt_class_ids)
# indices = np.zeros(0)
indices = np.arange(len(pred_class_ids))
# if num_pred:
# # Sort predictions by score from high to low
# indices = np.argsort(pred_size)[::-1]
# pred_class_ids = pred_class_ids[indices].copy()
# pred_size = pred_size[indices].copy()
# pred_sRT = pred_sRT[indices].copy()
# compute IoU overlaps [pred_bboxs gt_bboxs]
overlaps = np.zeros((num_pred, num_gt), dtype=np.float32)
for i in range(num_pred):
for j in range(num_gt):
# print("pred SRT", pred_sRT[i])
# print("gt SRT",gt_sRT[j])
# print("\n")
# print("pred_size[i, :]", pred_size[i, :])
# print("gt_size[j]", gt_size[j])
overlaps[i, j] = compute_3d_IoU(pred_sRT[i], gt_sRT[j], pred_size[i, :], gt_size[j],
synset_names[pred_class_ids[i]], synset_names[gt_class_ids[j]], gt_handle_visibility[j])
# print("\n")
# print("overlaps", overlaps)
# loop through predictions and find matching ground truth boxes
num_iou_3d_thres = len(iou_3d_thresholds)
pred_matches = -1 * np.ones([num_iou_3d_thres, num_pred])
gt_matches = -1 * np.ones([num_iou_3d_thres, num_gt])
for s, iou_thres in enumerate(iou_3d_thresholds):
for i in range(pred_sRT.shape[0]):
# Find best matching ground truth box
# 1. Sort matches by score
sorted_ixs = np.argsort(overlaps[i])[::-1]
# 2. Remove low scores
low_score_idx = np.where(overlaps[i, sorted_ixs] < score_threshold)[0]
if low_score_idx.size > 0:
sorted_ixs = sorted_ixs[:low_score_idx[0]]
# 3. Find the match
for j in sorted_ixs:
# If ground truth box is already matched, go to next one
if gt_matches[s, j] > -1:
continue
# If we reach IoU smaller than the threshold, end the loop
iou = overlaps[i, j]
if iou < iou_thres:
break
# Do we have a match?
if not pred_class_ids[i] == gt_class_ids[j]:
continue
if iou > iou_thres:
gt_matches[s, j] = i
pred_matches[s, i] = j
break
# print("pred match", pred_matches.shape)
# print("------------\n")
return gt_matches, pred_matches, overlaps, indices
def compute_RT_errors(sRT_1, sRT_2, class_id, handle_visibility, synset_names):
"""
Args:
sRT_1: [4, 4]. homogeneous affine transformation
sRT_2: [4, 4]. homogeneous affine transformation
Returns:
theta: angle difference of R in degree
shift: l2 difference of T in centimeter
"""
# make sure the last row is [0, 0, 0, 1]
if sRT_1 is None or sRT_2 is None:
return -1
try:
assert np.array_equal(sRT_1[3, :], sRT_2[3, :])
assert np.array_equal(sRT_1[3, :], np.array([0, 0, 0, 1]))
except AssertionError:
print(sRT_1[3, :], sRT_2[3, :])
exit()
R1 = sRT_1[:3, :3] / np.cbrt(np.linalg.det(sRT_1[:3, :3]))
T1 = sRT_1[:3, 3]
R2 = sRT_2[:3, :3] / np.cbrt(np.linalg.det(sRT_2[:3, :3]))
T2 = sRT_2[:3, 3]
# symmetric when rotating around y-axis
if synset_names[class_id] in ['bottle', 'can', 'bowl'] or \
(synset_names[class_id] == 'mug' and handle_visibility == 0):
y = np.array([0, 1, 0])
y1 = R1 @ y
y2 = R2 @ y
cos_theta = y1.dot(y2) / (np.linalg.norm(y1) * np.linalg.norm(y2))
else:
R = R1 @ R2.transpose()
cos_theta = (np.trace(R) - 1) / 2
theta = np.arccos(np.clip(cos_theta, -1.0, 1.0)) * 180 / np.pi
shift = np.linalg.norm(T1 - T2) * 100
result = np.array([theta, shift])
return result
def compute_RT_overlaps(gt_class_ids, gt_sRT, gt_handle_visibility, pred_class_ids, pred_sRT, synset_names):
""" Finds overlaps between prediction and ground truth instances.
Returns:
overlaps:
"""
num_pred = len(pred_class_ids)
num_gt = len(gt_class_ids)
overlaps = np.zeros((num_pred, num_gt, 2))
for i in range(num_pred):
for j in range(num_gt):
overlaps[i, j, :] = compute_RT_errors(pred_sRT[i], gt_sRT[j], gt_class_ids[j],
gt_handle_visibility[j], synset_names)
return overlaps
def compute_RT_matches(overlaps, pred_class_ids, gt_class_ids, degree_thres_list, shift_thres_list):
num_degree_thres = len(degree_thres_list)
num_shift_thres = len(shift_thres_list)
num_pred = len(pred_class_ids)
num_gt = len(gt_class_ids)
pred_matches = -1 * np.ones((num_degree_thres, num_shift_thres, num_pred))
gt_matches = -1 * np.ones((num_degree_thres, num_shift_thres, num_gt))
if num_pred == 0 or num_gt == 0:
return gt_matches, pred_matches
assert num_pred == overlaps.shape[0]
assert num_gt == overlaps.shape[1]
assert overlaps.shape[2] == 2
for d, degree_thres in enumerate(degree_thres_list):
for s, shift_thres in enumerate(shift_thres_list):
for i in range(num_pred):
# Find best matching ground truth box
# 1. Sort matches by scores from low to high
sum_degree_shift = np.sum(overlaps[i, :, :], axis=-1)
sorted_ixs = np.argsort(sum_degree_shift)
# 2. Find the match
for j in sorted_ixs:
# If ground truth box is already matched, go to next one
if gt_matches[d, s, j] > -1 or pred_class_ids[i] != gt_class_ids[j]:
continue
# If we reach IoU smaller than the threshold, end the loop
if overlaps[i, j, 0] > degree_thres or overlaps[i, j, 1] > shift_thres:
continue
gt_matches[d, s, j] = i
pred_matches[d, s, i] = j
break
return gt_matches, pred_matches
def compute_ap_and_acc(pred_matches, gt_matches):
# sort the scores from high to low
# assert pred_matches.shape[0] == pred_scores.shape[0]
# score_indices = np.argsort(pred_scores)[::-1]
# # pred_scores = pred_scores[score_indices]
# pred_matches = pred_matches[score_indices]
precisions = np.cumsum(pred_matches > -1) / (np.arange(len(pred_matches)) + 1)
recalls = np.cumsum(pred_matches > -1).astype(np.float32) / len(gt_matches)
# Pad with start and end values to simplify the math
precisions = np.concatenate([[0], precisions, [0]])
recalls = np.concatenate([[0], recalls, [1]])
# Ensure precision values decrease but don't increase. This way, the
# precision value at each recall threshold is the maximum it can be
# for all following recall thresholds, as specified by the VOC paper.
for i in range(len(precisions) - 2, -1, -1):
precisions[i] = np.maximum(precisions[i], precisions[i + 1])
# compute mean AP over recall range
indices = np.where(recalls[:-1] != recalls[1:])[0] + 1
ap = np.sum((recalls[indices] - recalls[indices - 1]) * precisions[indices])
# accuracy
acc = np.sum(pred_matches > -1) / len(pred_matches)
return ap, acc
def compute_mAP(pred_results, out_dir, degree_thresholds=[180], shift_thresholds=[100],
iou_3d_thresholds=[0.1], iou_pose_thres=0.1, use_matches_for_pose=False):
""" Compute mean Average Precision.
Returns:
iou_aps:
pose_aps:
iou_acc:
pose_acc:
"""
synset_names = ['BG', 'bottle', 'bowl', 'camera', 'can', 'laptop', 'mug']
num_classes = len(synset_names)
degree_thres_list = list(degree_thresholds) + [360]
num_degree_thres = len(degree_thres_list)
shift_thres_list = list(shift_thresholds) + [100]
num_shift_thres = len(shift_thres_list)
iou_thres_list = list(iou_3d_thresholds)
num_iou_thres = len(iou_thres_list)
if use_matches_for_pose:
assert iou_pose_thres in iou_thres_list
# pre-allocate more than enough memory
iou_aps = np.zeros((num_classes + 1, num_iou_thres))
iou_acc = np.zeros((num_classes + 1, num_iou_thres))
iou_pred_matches_all = [np.zeros((num_iou_thres, 30000)) for _ in range(num_classes)]
# iou_pred_scores_all = [np.zeros((num_iou_thres, 30000)) for _ in range(num_classes)]
iou_gt_matches_all = [np.zeros((num_iou_thres, 30000)) for _ in range(num_classes)]
iou_pred_count = [0 for _ in range(num_classes)]
iou_gt_count = [0 for _ in range(num_classes)]
pose_aps = np.zeros((num_classes + 1, num_degree_thres, num_shift_thres))
pose_acc = np.zeros((num_classes + 1, num_degree_thres, num_shift_thres))
pose_pred_matches_all = [np.zeros((num_degree_thres, num_shift_thres, 30000)) for _ in range(num_classes)]
# pose_pred_scores_all = [np.zeros((num_degree_thres, num_shift_thres, 30000)) for _ in range(num_classes)]
pose_gt_matches_all = [np.zeros((num_degree_thres, num_shift_thres, 30000)) for _ in range(num_classes)]
pose_pred_count = [0 for _ in range(num_classes)]
pose_gt_count = [0 for _ in range(num_classes)]
# loop over results to gather pred matches and gt matches for iou and pose metrics
progress = 0
for progress, result in enumerate(tqdm(pred_results)):
gt_class_ids = result['gt_class_ids'].astype(np.int32)
# print("gt class ids", gt_class_ids)
gt_sRT = np.array(result['gt_RTs'])
gt_size = np.array(result['gt_scales'])
gt_handle_visibility = result['gt_handle_visibility']
pred_class_ids = result['pred_class_ids']
# print("pred_class ids", pred_class_ids)
# print("=====================\n")
pred_sRT = np.array(result['pred_RTs'])
pred_size = result['pred_scales']
# pred_scores = result['pred_scores']
# pred_scores = []
if len(gt_class_ids) == 0 and len(pred_class_ids) == 0:
continue
for cls_id in range(1, num_classes):
# print("class id", cls_id)
# print("gt class ids", gt_class_ids)
# print("gt class ids = class id", gt_class_ids==cls_id)
cls_gt_class_ids = gt_class_ids[gt_class_ids==cls_id] if len(gt_class_ids) else np.zeros(0)
cls_gt_sRT = gt_sRT[gt_class_ids==cls_id] if len(gt_class_ids) else np.zeros((0, 4, 4))
cls_gt_size = gt_size[gt_class_ids==cls_id] if len(gt_class_ids) else np.zeros((0, 3))
# print("cls_gt_class_ids", cls_gt_class_ids)
# print("clas gt_size", cls_gt_size)
if synset_names[cls_id] != 'mug':
cls_gt_handle_visibility = np.ones_like(cls_gt_class_ids)
else:
cls_gt_handle_visibility = gt_handle_visibility[gt_class_ids==cls_id] if len(gt_class_ids) else np.ones(0)
# print("pred class ids", pred_class_ids)
# print("pred class ids = class id", pred_class_ids==cls_id)
cls_pred_class_ids = pred_class_ids[pred_class_ids==cls_id] if len(pred_class_ids) else np.zeros(0)
cls_pred_sRT = pred_sRT[pred_class_ids==cls_id] if len(pred_class_ids) else np.zeros((0, 4, 4))
cls_pred_size = pred_size[pred_class_ids==cls_id] if len(pred_class_ids) else np.zeros((0, 3))
# cls_pred_scores = pred_scores[pred_class_ids==cls_id] if len(pred_scores) else np.zeros(0)
# calculate the overlap between each gt instance and pred instance
iou_cls_gt_match, iou_cls_pred_match, _, iou_pred_indices = \
compute_IoU_matches(cls_gt_class_ids, cls_gt_sRT, cls_gt_size, cls_gt_handle_visibility,
cls_pred_class_ids, cls_pred_sRT, cls_pred_size,
synset_names, iou_thres_list)
# print("IOU CLASS pred matches", iou_cls_pred_match)
if len(iou_pred_indices):
cls_pred_class_ids = cls_pred_class_ids[iou_pred_indices]
cls_pred_sRT = cls_pred_sRT[iou_pred_indices]
# cls_pred_scores = cls_pred_scores[iou_pred_indices]
num_pred = iou_cls_pred_match.shape[1]
pred_start = iou_pred_count[cls_id]
pred_end = pred_start + num_pred
iou_pred_count[cls_id] = pred_end
iou_pred_matches_all[cls_id][:, pred_start:pred_end] = iou_cls_pred_match
# cls_pred_scores_tile = np.tile(cls_pred_scores, (num_iou_thres, 1))
# assert cls_pred_scores_tile.shape[1] == num_pred
# iou_pred_scores_all[cls_id][:, pred_start:pred_end] = cls_pred_scores_tile
num_gt = iou_cls_gt_match.shape[1]
gt_start = iou_gt_count[cls_id]
gt_end = gt_start + num_gt
iou_gt_count[cls_id] = gt_end
iou_gt_matches_all[cls_id][:, gt_start:gt_end] = iou_cls_gt_match
if use_matches_for_pose:
thres_ind = list(iou_thres_list).index(iou_pose_thres)
iou_thres_pred_match = iou_cls_pred_match[thres_ind, :]
cls_pred_class_ids = cls_pred_class_ids[iou_thres_pred_match > -1] if len(iou_thres_pred_match) > 0 else np.zeros(0)
cls_pred_sRT = cls_pred_sRT[iou_thres_pred_match > -1] if len(iou_thres_pred_match) > 0 else np.zeros((0, 4, 4))
# cls_pred_scores = cls_pred_scores[iou_thres_pred_match > -1] if len(iou_thres_pred_match) > 0 else np.zeros(0)
iou_thres_gt_match = iou_cls_gt_match[thres_ind, :]
cls_gt_class_ids = cls_gt_class_ids[iou_thres_gt_match > -1] if len(iou_thres_gt_match) > 0 else np.zeros(0)
cls_gt_sRT = cls_gt_sRT[iou_thres_gt_match > -1] if len(iou_thres_gt_match) > 0 else np.zeros((0, 4, 4))
cls_gt_handle_visibility = cls_gt_handle_visibility[iou_thres_gt_match > -1] if len(iou_thres_gt_match) > 0 else np.zeros(0)
RT_overlaps = compute_RT_overlaps(cls_gt_class_ids, cls_gt_sRT, cls_gt_handle_visibility,
cls_pred_class_ids, cls_pred_sRT, synset_names)
pose_cls_gt_match, pose_cls_pred_match = compute_RT_matches(RT_overlaps, cls_pred_class_ids, cls_gt_class_ids,
degree_thres_list, shift_thres_list)
num_pred = pose_cls_pred_match.shape[2]
pred_start = pose_pred_count[cls_id]
pred_end = pred_start + num_pred
pose_pred_count[cls_id] = pred_end
pose_pred_matches_all[cls_id][:, :, pred_start:pred_end] = pose_cls_pred_match
# cls_pred_scores_tile = np.tile(cls_pred_scores, (num_degree_thres, num_shift_thres, 1))
# assert cls_pred_scores_tile.shape[2] == num_pred
# pose_pred_scores_all[cls_id][:, :, pred_start:pred_end] = cls_pred_scores_tile
num_gt = pose_cls_gt_match.shape[2]
gt_start = pose_gt_count[cls_id]
gt_end = gt_start + num_gt
pose_gt_count[cls_id] = gt_end
pose_gt_matches_all[cls_id][:, :, gt_start:gt_end] = pose_cls_gt_match
# trim zeros
for cls_id in range(num_classes):
# IoU
iou_pred_matches_all[cls_id] = iou_pred_matches_all[cls_id][:, :iou_pred_count[cls_id]]
# iou_pred_scores_all[cls_id] = iou_pred_scores_all[cls_id][:, :iou_pred_count[cls_id]]
iou_gt_matches_all[cls_id] = iou_gt_matches_all[cls_id][:, :iou_gt_count[cls_id]]
# pose
pose_pred_matches_all[cls_id] = pose_pred_matches_all[cls_id][:, :, :pose_pred_count[cls_id]]
# pose_pred_scores_all[cls_id] = pose_pred_scores_all[cls_id][:, :, :pose_pred_count[cls_id]]
pose_gt_matches_all[cls_id] = pose_gt_matches_all[cls_id][:, :, :pose_gt_count[cls_id]]
# compute 3D IoU mAP
for cls_id in range(1, num_classes):
for s, iou_thres in enumerate(iou_thres_list):
iou_aps[cls_id, s], iou_acc[cls_id, s] = compute_ap_and_acc(iou_pred_matches_all[cls_id][s, :],
# iou_pred_scores_all[cls_id][s, :],
iou_gt_matches_all[cls_id][s, :])
iou_aps[-1, :] = np.mean(iou_aps[1:-1, :], axis=0)
iou_acc[-1, :] = np.mean(iou_acc[1:-1, :], axis=0)
# compute pose mAP
for i, degree_thres in enumerate(degree_thres_list):
for j, shift_thres in enumerate(shift_thres_list):
for cls_id in range(1, num_classes):
cls_pose_pred_matches_all = pose_pred_matches_all[cls_id][i, j, :]
cls_pose_gt_matches_all = pose_gt_matches_all[cls_id][i, j, :]
# cls_pose_pred_scores_all = pose_pred_scores_all[cls_id][i, j, :]
pose_aps[cls_id, i, j], pose_acc[cls_id, i, j] = compute_ap_and_acc(cls_pose_pred_matches_all,
# cls_pose_pred_scores_all,
cls_pose_gt_matches_all)
pose_aps[-1, i, j] = np.mean(pose_aps[1:-1, i, j])
pose_acc[-1, i, j] = np.mean(pose_acc[1:-1, i, j])
# save results to pkl
result_dict = {}
result_dict['iou_thres_list'] = iou_thres_list
result_dict['degree_thres_list'] = degree_thres_list
result_dict['shift_thres_list'] = shift_thres_list
result_dict['iou_aps'] = iou_aps
result_dict['pose_aps'] = pose_aps
result_dict['iou_acc'] = iou_acc
result_dict['pose_acc'] = pose_acc
pkl_path = os.path.join(out_dir, 'mAP_Acc.pkl')
with open(pkl_path, 'wb') as f:
cPickle.dump(result_dict, f)
return iou_aps, pose_aps, iou_acc, pose_acc
def plot_mAP(iou_aps, pose_aps, out_dir, iou_thres_list, degree_thres_list, shift_thres_list):
""" Draw iou 3d AP vs. iou thresholds.
"""
labels = ['bottle', 'bowl', 'camera', 'can', 'laptop', 'mug', 'mean', 'nocs']
colors = ['tab:blue', 'tab:orange', 'tab:green', 'tab:pink', 'tab:olive', 'tab:purple', 'tab:red', 'tab:gray']
styles = ['-', '-', '-', '-', '-', '-', '--', ':']
fig, (ax_iou, ax_degree, ax_shift) = plt.subplots(1, 3, figsize=(8, 3.5))
# IoU subplot
ax_iou.set_title('3D IoU', fontsize=10)
ax_iou.set_ylabel('Average Precision')
ax_iou.set_ylim(0, 100)
ax_iou.set_xlabel('Percent')
ax_iou.set_xlim(0, 100)
ax_iou.xaxis.set_ticks([0, 25, 50, 75, 100])
ax_iou.grid()
for i in range(1, iou_aps.shape[0]):
ax_iou.plot(100*np.array(iou_thres_list), 100*iou_aps[i, :],
color=colors[i-1], linestyle=styles[i-1], label=labels[i-1])
# rotation subplot
ax_degree.set_title('Rotation', fontsize=10)
ax_degree.set_ylim(0, 100)
ax_degree.yaxis.set_ticklabels([])
ax_degree.set_xlabel('Degree')
ax_degree.set_xlim(0, 60)
ax_degree.xaxis.set_ticks([0, 20, 40, 60])
ax_degree.grid()
for i in range(1, pose_aps.shape[0]):
ax_degree.plot(np.array(degree_thres_list), 100*pose_aps[i, :len(degree_thres_list), -1],
color=colors[i-1], linestyle=styles[i-1], label=labels[i-1])
# translation subplot
ax_shift.set_title('Translation', fontsize=10)
ax_shift.set_ylim(0, 100)
ax_shift.yaxis.set_ticklabels([])
ax_shift.set_xlabel('Centimeter')
ax_shift.set_xlim(0, 10)
ax_shift.xaxis.set_ticks([0, 5, 10])
ax_shift.grid()
for i in range(1, pose_aps.shape[0]):
ax_shift.plot(np.array(shift_thres_list), 100*pose_aps[i, -1, :len(shift_thres_list)],
color=colors[i-1], linestyle=styles[i-1], label=labels[i-1])
ax_shift.legend(loc='lower right', fontsize='small')
plt.tight_layout()
# plt.show()
plt.savefig(os.path.join(out_dir, 'mAP.png'))
plt.close(fig)
return
def calculate_2d_projections(coordinates_3d, intrinsics):
"""
Args:
coordinates_3d: [3, N]
intrinsics: [3, 3]
Returns:
projected_coordinates: [N, 2]
"""
projected_coordinates = intrinsics @ coordinates_3d
projected_coordinates = projected_coordinates[:2, :] / projected_coordinates[2, :]
projected_coordinates = projected_coordinates.transpose()
projected_coordinates = np.array(projected_coordinates, dtype=np.int32)
return projected_coordinates
def align_rotation(sRT):
""" Align rotations for symmetric objects.
Args:
sRT: 4 x 4
"""
s = np.cbrt(np.linalg.det(sRT[:3, :3]))
R = sRT[:3, :3] / s
T = sRT[:3, 3]
theta_x = R[0, 0] + R[2, 2]
theta_y = R[0, 2] - R[2, 0]
r_norm = math.sqrt(theta_x**2 + theta_y**2)
s_map = np.array([[theta_x/r_norm, 0.0, -theta_y/r_norm],
[0.0, 1.0, 0.0 ],
[theta_y/r_norm, 0.0, theta_x/r_norm]])
rotation = R @ s_map
aligned_sRT = np.identity(4, dtype=np.float32)
aligned_sRT[:3, :3] = s * rotation
aligned_sRT[:3, 3] = T
return aligned_sRT
def draw_bboxes(img, img_pts, color):
img_pts = np.int32(img_pts).reshape(-1, 2)
# draw ground layer in darker color
color_ground = (int(color[0]*0.3), int(color[1]*0.3), int(color[2]*0.3))
for i, j in zip([4, 5, 6, 7], [5, 7, 4, 6]):
img = cv2.line(img, tuple(img_pts[i]), tuple(img_pts[j]), color_ground, 2)
# draw pillars in minor darker color
color_pillar = (int(color[0]*0.6), int(color[1]*0.6), int(color[2]*0.6))
for i, j in zip(range(4), range(4, 8)):
img = cv2.line(img, tuple(img_pts[i]), tuple(img_pts[j]), color_pillar, 2)
# draw top layer in original color
for i, j in zip([0, 1, 2, 3], [1, 3, 0, 2]):
img = cv2.line(img, tuple(img_pts[i]), tuple(img_pts[j]), color, 2)
return img
def draw_detections(img, out_dir, data_name, img_id, intrinsics, pred_sRT, pred_size, pred_class_ids,
gt_sRT, gt_size, gt_class_ids, nocs_sRT, nocs_size, nocs_class_ids, draw_gt=True, draw_nocs=True):
""" Visualize pose predictions.
"""
out_path = os.path.join(out_dir, '{}_{}_pred.png'.format(data_name, img_id))
# draw nocs results - BLUE color
if draw_nocs:
for i in range(nocs_sRT.shape[0]):
if nocs_class_ids[i] in [1, 2, 4]:
sRT = align_rotation(nocs_sRT[i, :, :])
else:
sRT = nocs_sRT[i, :, :]
bbox_3d = get_3d_bbox(nocs_size[i, :], 0)
transformed_bbox_3d = transform_coordinates_3d(bbox_3d, sRT)
projected_bbox = calculate_2d_projections(transformed_bbox_3d, intrinsics)
img = draw_bboxes(img, projected_bbox, (255, 0, 0))
# darw ground truth - GREEN color
if draw_gt:
for i in range(gt_sRT.shape[0]):
if gt_class_ids[i] in [1, 2, 4]:
sRT = align_rotation(gt_sRT[i, :, :])
else:
sRT = gt_sRT[i, :, :]
bbox_3d = get_3d_bbox(gt_size[i, :], 0)
transformed_bbox_3d = transform_coordinates_3d(bbox_3d, sRT)
projected_bbox = calculate_2d_projections(transformed_bbox_3d, intrinsics)
img = draw_bboxes(img, projected_bbox, (0, 255, 0))
# darw prediction - RED color
for i in range(pred_sRT.shape[0]):
if pred_class_ids[i] in [1, 2, 4]:
sRT = align_rotation(pred_sRT[i, :, :])
else:
sRT = pred_sRT[i, :, :]
bbox_3d = get_3d_bbox(pred_size[i, :], 0)
transformed_bbox_3d = transform_coordinates_3d(bbox_3d, sRT)
projected_bbox = calculate_2d_projections(transformed_bbox_3d, intrinsics)
img = draw_bboxes(img, projected_bbox, (0, 0, 255))
cv2.imwrite(out_path, img)
# cv2.imshow('vis', img)
# cv2.waitKey(0)