-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_student.py
299 lines (237 loc) · 11.5 KB
/
train_student.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
"""
the general training framework
"""
from __future__ import print_function
import os
import argparse
import time
import numpy as np
import random
import torch
import torch.optim as optim
import torch.nn as nn
import torch.backends.cudnn as cudnn
from models import model_dict
from models.util import Embed, ConvReg, LinearEmbed
from models.util import Connector, Translator, Paraphraser
from dataset.cifar100 import get_cifar100_dataloaders, get_cifar100_dataloaders_sample
from helper.util import adjust_learning_rate
from distiller_zoo import TTM, WTTM, DistillKL, CRDLoss, ITLoss, DIST
from helper.loops import train_distill as train, validate
def parse_option():
parser = argparse.ArgumentParser('argument for training')
parser.add_argument('--print_freq', type=int, default=100, help='print frequency')
parser.add_argument('--batch_size', type=int, default=64, help='batch_size')
parser.add_argument('--num_workers', type=int, default=8, help='num of workers to use')
parser.add_argument('--epochs', type=int, default=240, help='number of training epochs')
# optimization
parser.add_argument('--learning_rate', type=float, default=0.05, help='learning rate')
parser.add_argument('--lr_decay_epochs', type=str, default='150,180,210', help='where to decay lr, can be a list')
parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='decay rate for learning rate')
parser.add_argument('--weight_decay', type=float, default=5e-4, help='weight decay')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
# dataset
parser.add_argument('--dataset', type=str, default='cifar100', choices=['cifar100'], help='dataset')
# model
parser.add_argument('--model_s', type=str, default='resnet8',
choices=['resnet8', 'resnet14', 'resnet20', 'resnet32', 'resnet44', 'resnet56', 'resnet110',
'resnet8x4', 'resnet32x4', 'wrn_16_1', 'wrn_16_2', 'wrn_40_1', 'wrn_40_2',
'vgg8', 'vgg11', 'vgg13', 'vgg16', 'vgg19', 'ResNet50',
'MobileNetV2', 'ShuffleV1', 'ShuffleV2'])
parser.add_argument('--path_t', type=str, default=None, help='teacher model snapshot')
# distillation
parser.add_argument('--distill', type=str, default='kd', choices=['kd', 'ttm', 'wttm', 'crd', 'itrd', 'dist'])
parser.add_argument('--add', type=str, default='kd', choices=['kd', 'ttm', 'wttm'])
parser.add_argument('--trial', type=str, default='1', help='trial id')
parser.add_argument('--seed', type=int, default=0, help='seed id, set to 0 if do not want to fix the seed')
parser.add_argument('-r', '--gamma', type=float, default=1, help='weight for classification')
parser.add_argument('-a', '--alpha', type=float, default=None, help='weight balance for additional loss')
parser.add_argument('-b', '--beta', type=float, default=None, help='weight balance for main loss')
# KD distillation
parser.add_argument('--kd_T', type=float, default=4, help='temperature for KD distillation')
# TTM and WTTM distillation
parser.add_argument('--ttm_l', type=float, default=1, help='exponent for TTM and WTTM distillation')
# ITRD distillation
parser.add_argument('--lambda_corr', type=float, default=2.0, help='correlation loss weight')
parser.add_argument('--lambda_mutual', type=float, default=1.0, help='mutual information loss weight')
parser.add_argument('--alpha_it', type=float, default=1.50, help='Renyis alpha')
# DIST distillation
parser.add_argument('--dist_beta', type=float, default=1, help='weight for inter loss')
parser.add_argument('--dist_gamma', type=float, default=1, help='weight for intra loss')
parser.add_argument('--dist_tau', type=float, default=4, help='temperature for DIST distillation')
# NCE distillation
parser.add_argument('--feat_dim', default=128, type=int, help='feature dimension')
parser.add_argument('--mode', default='exact', type=str, choices=['exact', 'relax'])
parser.add_argument('--nce_k', default=16384, type=int, help='number of negative samples for NCE')
parser.add_argument('--nce_t', default=0.07, type=float, help='temperature parameter for softmax')
parser.add_argument('--nce_m', default=0.5, type=float, help='momentum for non-parametric updates')
opt = parser.parse_args()
# set different learning rate from these 3 models
if opt.model_s in ['MobileNetV2', 'ShuffleV1', 'ShuffleV2']:
opt.learning_rate = 0.01
# set the path according to the environment
opt.model_path = './save/student_model'
opt.log_pth = './save/student_log'
if opt.alpha > 0:
opt.model_path = './save/student_model_add_'+opt.add
opt.log_pth = './save/student_log_add_'+opt.add
iterations = opt.lr_decay_epochs.split(',')
opt.lr_decay_epochs = list([])
for it in iterations:
opt.lr_decay_epochs.append(int(it))
opt.model_t = get_teacher_name(opt.path_t)
opt.model_name = 'S:{}_T:{}_{}_{}_temp:{}_l:{}_r:{}_a:{}_b:{}_{}_{}'.format(opt.model_s, opt.model_t, opt.dataset, opt.distill, opt.kd_T, opt.ttm_l,\
opt.gamma, opt.alpha, opt.beta, opt.trial, opt.seed)
opt.save_folder = os.path.join(opt.model_path, opt.model_name)
if not os.path.isdir(opt.save_folder):
os.makedirs(opt.save_folder)
opt.log_key = 'S:{}_T:{}_{}_{}'.format(opt.model_s, opt.model_t, opt.dataset, opt.distill)
opt.log_folder = os.path.join(opt.log_pth, opt.log_key)
if not os.path.isdir(opt.log_folder):
os.makedirs(opt.log_folder)
return opt
def get_teacher_name(model_path):
"""parse teacher name"""
segments = model_path.split('/')[-2].split('_')
if segments[0] != 'wrn':
return segments[0]
else:
return segments[0] + '_' + segments[1] + '_' + segments[2]
def load_teacher(model_path, n_cls):
print('==> loading teacher model')
model_t = get_teacher_name(model_path)
model = model_dict[model_t](num_classes=n_cls)
model.load_state_dict(torch.load(model_path)['model'])
print('==> done')
return model
def main():
best_acc = 0
opt = parse_option()
if opt.seed:
torch.manual_seed(opt.seed)
torch.cuda.manual_seed(opt.seed)
torch.cuda.manual_seed_all(opt.seed)
np.random.seed(opt.seed)
random.seed(opt.seed)
torch.manual_seed(opt.seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# dataloader
if opt.dataset == 'cifar100':
if opt.distill in ['crd']:
train_loader, val_loader, n_data = get_cifar100_dataloaders_sample(batch_size=opt.batch_size,
num_workers=opt.num_workers,
k=opt.nce_k,
mode=opt.mode)
else:
train_loader, val_loader, n_data = get_cifar100_dataloaders(batch_size=opt.batch_size,
num_workers=opt.num_workers,
is_instance=True)
n_cls = 100
else:
raise NotImplementedError(opt.dataset)
# model
model_t = load_teacher(opt.path_t, n_cls)
model_s = model_dict[opt.model_s](num_classes=n_cls)
data = torch.randn(2, 3, 32, 32)
model_t.eval()
model_s.eval()
feat_t, _ = model_t(data, is_feat=True)
feat_s, _ = model_s(data, is_feat=True)
module_list = nn.ModuleList([])
module_list.append(model_s)
trainable_list = nn.ModuleList([])
trainable_list.append(model_s)
criterion_cls = nn.CrossEntropyLoss()
if opt.add == 'kd':
criterion_div = DistillKL(opt.kd_T)
elif opt.add == 'ttm':
criterion_div = TTM(opt.ttm_l)
elif opt.add == 'wttm':
criterion_div = WTTM(opt.ttm_l)
else:
raise NotImplementedError(opt.add)
if opt.distill == 'kd':
criterion_kd = DistillKL(opt.kd_T)
elif opt.distill == 'ttm':
criterion_kd = TTM(opt.ttm_l)
elif opt.distill == 'wttm':
criterion_kd = WTTM(opt.ttm_l)
elif opt.distill == 'crd':
opt.s_dim = feat_s[-1].shape[1]
opt.t_dim = feat_t[-1].shape[1]
opt.n_data = n_data
criterion_kd = CRDLoss(opt)
module_list.append(criterion_kd.embed_s)
module_list.append(criterion_kd.embed_t)
trainable_list.append(criterion_kd.embed_s)
trainable_list.append(criterion_kd.embed_t)
elif opt.distill == 'itrd':
opt.s_dim = feat_s[-1].shape[1]
opt.t_dim = feat_t[-1].shape[1]
opt.n_data = n_data
criterion_kd = ITLoss(opt)
module_list.append(criterion_kd)
trainable_list.append(criterion_kd)
module_list.append(criterion_kd.embed)
trainable_list.append(criterion_kd.embed)
elif opt.distill == 'dist':
criterion_kd = DIST(opt.dist_beta, opt.dist_gamma, opt.dist_tau)
else:
raise NotImplementedError(opt.distill)
criterion_list = nn.ModuleList([])
criterion_list.append(criterion_cls) # classification loss
criterion_list.append(criterion_div) # additional loss
criterion_list.append(criterion_kd) # distillation loss
# optimizer
optimizer = optim.SGD(trainable_list.parameters(),
lr=opt.learning_rate,
momentum=opt.momentum,
weight_decay=opt.weight_decay)
# append teacher after optimizer to avoid weight_decay
module_list.append(model_t)
if torch.cuda.is_available():
module_list.cuda()
criterion_list.cuda()
if not opt.seed:
cudnn.benchmark = True
# validate teacher accuracy
teacher_acc, _, _ = validate(val_loader, model_t, criterion_cls, opt)
print('teacher accuracy: ', teacher_acc)
# log file
log_fname = os.path.join(opt.log_folder, '{experiment}.txt'.format(experiment=opt.model_name))
# routine
for epoch in range(1, opt.epochs + 1):
adjust_learning_rate(epoch, opt, optimizer)
print("==> training...")
time1 = time.time()
train_acc, train_loss = train(epoch, train_loader, module_list, criterion_list, optimizer, opt)
time2 = time.time()
print('epoch {}, total time {:.2f}'.format(epoch, time2 - time1))
test_acc, tect_acc_top5, test_loss = validate(val_loader, model_s, criterion_cls, opt)
with open(log_fname, 'a') as log:
log.write(str(test_acc.cpu().numpy())+'\n')
# save the best model
if test_acc > best_acc:
best_acc = test_acc
state = {
'epoch': epoch,
'model': model_s.state_dict(),
'best_acc': best_acc,
}
save_file = os.path.join(opt.save_folder, '{}_best.pth'.format(opt.model_s))
print('saving the best model!')
torch.save(state, save_file)
print('best accuracy:', best_acc)
# save best accuracy
with open(log_fname, 'a') as log:
log.write('best: ' + str(best_acc.cpu().numpy())+'\n')
# save model
state = {
'opt': opt,
'model': model_s.state_dict(),
}
save_file = os.path.join(opt.save_folder, '{}_last.pth'.format(opt.model_s))
torch.save(state, save_file)
if __name__ == '__main__':
main()