-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_acc.py
executable file
·181 lines (152 loc) · 6.22 KB
/
get_acc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import csv
import enum
from torch.utils.data import dataloader
import json
from transformers.configuration_auto import AutoConfig
from utils.multiple_choices import MultipleChoiceDataset
from transformers import AutoTokenizer, AutoModelForMultipleChoice, WEIGHTS_NAME, RobertaForMultipleChoice
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader, SequentialSampler
from utils import processors, MultipleChoiceDataset, Split, MultipleChoiceSlidingDataset
from transformers.data.data_collator import DataCollator, DataCollatorWithPadding, default_data_collator
import argparse
import numpy as np
from tqdm import tqdm, trange
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# model = AutoModelForMultipleChoice.from_pretrained(args.model_name_or_path).to(device)
# model.eval()
# albert_path = "/home/xx/pretrained_model/albert-xxlarge-v2"
# tokenizer = AutoTokenizer.from_pretrained(albert_path)
# only need path
tokenizer_path = {"albert" : "/home/xx/pretrained_model/albert-xxlarge-v2", "roberta": "/home/xx/pretrained_model/roberta-large", "xlnet":"/home/xx/pretrained_model/xlnet-large-cased"}
def get_dataloader(tokenizer, args):
"""
由于GPU限制,所以batch_size=1,免得占太多显存,eval慢点无所谓。
"""
if args.sliding_window:
eval_dataset = (
MultipleChoiceSlidingDataset(
data_dir=args.data_dir,
tokenizer=tokenizer,
task=args.task_name,
max_seq_length=args.max_seq_length,
overwrite_cache=args.overwrite_cache,
mode=Split.dev,
)
)
else:
eval_dataset = MultipleChoiceDataset(
data_dir=args.data_dir,
tokenizer=tokenizer,
task=args.task_name,
max_seq_length=args.max_seq_length,
overwrite_cache=args.overwrite_cache,
mode=Split.dev,
)
eval_dataloader = DataLoader(
eval_dataset,
sampler=SequentialSampler(eval_dataset),
batch_size=4,
drop_last=False,
collate_fn=default_data_collator,
num_workers=4,
)
# from IPython import embed;embed();exit(1)
return eval_dataloader
def _prepare_inputs(inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]:
"""
Prepare :obj:`inputs` before feeding them to the model, converting them to tensors if they are not already and
handling potential state.
"""
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
inputs[k] = v.to(device)
return inputs
import pickle
import numpy as np
def compute_acc(len_answer, labels,left,right):
total_num = right - left + 1
acc = 0
while left <= right:
acc += (len_answer[left][1] == labels[left][1]) / total_num
left += 1
return acc
def get_labels(args):
"""
依次读取label
"""
labels = []
dev_path = args.data_dir
with open(os.path.join(dev_path,"dev.jsonl"), "r", encoding='UTF-8') as reader:
for line in reader.readlines():
t = json.loads(line)
length = len(t["article"].split())
labels.append([length,t['label']])
labels.sort()
return labels
# import pickle
def get_len_answer(args):
answer,len_answer = [],[]
model = AutoModelForMultipleChoice.from_pretrained(args.model_name_or_path).to(device)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
eval_dataloader = get_dataloader(tokenizer, args)
model.eval()
with torch.no_grad():
for batch in tqdm(eval_dataloader, desc=''):
batch = _prepare_inputs(batch)
output= model(**batch)[1]
output = F.softmax(output, dim=1)
answer += output
answer = torch.stack(answer, dim=0)
answer = answer.cpu().numpy()
answer = torch.argmax(torch.tensor(answer),dim=1).cpu().numpy()
id = 0
with open(os.path.join(args.data_dir,'dev.jsonl'),'r') as lines:
for line in lines.readlines():
data = json.loads(line)
length = len(data["article"].split())
len_answer.append([length,answer[id]])
id += 1
# print(len_answer)
len_answer.sort()
# from IPython import embed;embed()
# from IPython import embed;embed();exit(1)
return len_answer
def print_result(args):
result = []
len_answer = get_len_answer(args)
labels = get_labels(args)
right_index = [340,680,1020,1360]
# right_index = [364,688,1012,1336]
passenge_nums = []
right = -1
for index in right_index:
left = right + 1
right = max([i for i,x in enumerate(len_answer) if x[0] <= index])
acc = compute_acc(len_answer,labels,left,right)
result.append(acc)
passenge_nums.append(right -left + 1)
left = right + 1
acc = compute_acc(len_answer,labels,left,len(len_answer) - 1)
passenge_nums.append(len(len_answer) -left)
result.append(acc)
print(result,passenge_nums)
def main():
parser = argparse.ArgumentParser(description='hope it will work')
default_path = "output/roberta-large_256_baseline"
parser.add_argument('--model_name_or_path', type=str, help='an integer for the accumulator', default=default_path)
parser.add_argument('--data_dir', type=str, help='an integer for the accumulator', default='./dataset/task2')
parser.add_argument('--max_seq_length', type=int, help='an integer for the accumulator', default=256)
parser.add_argument('--sliding_window', help='an integer for the accumulator', default=False,action="store_true" )
parser.add_argument('--task_name',type=str, help='an integer for the accumulator', default="semeval" )
parser.add_argument('--overwrite_cache', help='overwrite_cache', default=False,action="store_true" )
# parser.add_argument("--answer_list", nargs="+", default=["a", "b"], help="answer pickle")
# parser.add_argument("--model_list", nargs="+", default=["a", "b"], help="model list")
parser.add_argument("--model_path",type=str,default="output/roberta-large_256_baseline")
args = parser.parse_args()
print_result(args)
if __name__ == "__main__":
main()