-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain_bio.py
257 lines (222 loc) · 11.8 KB
/
train_bio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import argparse
import os
import numpy as np
import torch
from torch.utils.data import DataLoader
from transformers import AutoConfig, AutoModel, AutoTokenizer
from transformers.optimization import AdamW, get_linear_schedule_with_warmup
from model_balanceloss import DocREModel
from utils_sample import set_seed, collate_fn
from prepro import read_cdr, read_gda
import time
from datetime import datetime
def train(args, model, train_features, dev_features, test_features):
def logging(s, print_=True, log_=True):
if print_:
print(s)
if log_:
with open(args.log_dir, 'a+') as f_log:
f_log.write(s + '\n')
def finetune(features, optimizer, num_epoch, num_steps):
best_score = -1
train_dataloader = DataLoader(features, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, drop_last=True)
train_iterator = range(int(num_epoch))
total_steps = int(len(train_dataloader) * num_epoch // args.gradient_accumulation_steps)
warmup_steps = int(total_steps * args.warmup_ratio)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps)
print("Total steps: {}".format(total_steps))
print("Warmup steps: {}".format(warmup_steps))
log_step = 50
total_loss = 0
for epoch in train_iterator:
start_time = time.time()
model.zero_grad()
for step, batch in enumerate(train_dataloader):
model.train()
inputs = {'input_ids': batch[0].to(args.device),
'attention_mask': batch[1].to(args.device),
'labels': batch[2],
'entity_pos': batch[3],
'hts': batch[4],
}
outputs = model(**inputs)
loss = outputs[0] / args.gradient_accumulation_steps
loss.backward()
total_loss += loss.item()
if step % args.gradient_accumulation_steps == 0:
if args.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step()
model.zero_grad()
num_steps += 1
if num_steps % log_step == 0:
cur_loss = total_loss / log_step
elapsed = time.time() - start_time
#logging(
# '| epoch {:2d} | step {:4d} | min/b {:5.2f} | lr {} | train loss {:5.3f}'.format(
# epoch, num_steps, elapsed / 60, scheduler.get_lr(), cur_loss * 1000))
total_loss = 0
start_time = time.time()
if (step + 1) == len(train_dataloader) - 1 or (args.evaluation_steps > 0 and num_steps % args.evaluation_steps == 0 and step % args.gradient_accumulation_steps == 0):
logging('-' * 89)
eval_start_time = time.time()
dev_score, dev_output = evaluate(args, model, dev_features, tag="dev")
test_score, test_output = evaluate(args, model, test_features, tag="test")
#print(dev_output)
#print(test_output)
logging(
'| epoch {:3d} | time: {:5.2f}s | dev_output:{} | test_output:{}'.format(epoch, time.time() - eval_start_time,
dev_output, test_output))
if test_score > best_score:
best_score = test_score
logging('best_f1:{}'.format(best_score))
if args.save_path != "":
torch.save({
'epoch': epoch,
'checkpoint': model.state_dict(),
'best_f1': best_score
}, args.save_path)
return num_steps
extract_layer = ["extractor", "bilinear"]
bert_layer = ['bert_model']
optimizer_grouped_parameters = [
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in bert_layer)], "lr": args.bert_lr},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in extract_layer)], "lr": 1e-4},
{"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in extract_layer + bert_layer)]},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
num_steps = 0
set_seed(args)
model.zero_grad()
finetune(train_features, optimizer, args.num_train_epochs, num_steps)
def evaluate(args, model, features, tag="dev"):
dataloader = DataLoader(features, batch_size=args.test_batch_size, shuffle=False, collate_fn=collate_fn, drop_last=False)
preds, golds = [], []
for i, batch in enumerate(dataloader):
model.eval()
inputs = {'input_ids': batch[0].to(args.device),
'attention_mask': batch[1].to(args.device),
'labels': batch[2],
'entity_pos': batch[3],
'hts': batch[4],
}
with torch.no_grad():
output = model(**inputs)
loss = output[0]
pred = output[1].cpu().numpy()
pred[np.isnan(pred)] = 0
preds.append(pred)
golds.append(np.concatenate([np.array(label, np.float32) for label in batch[2]], axis=0))
preds = np.concatenate(preds, axis=0).astype(np.float32)
golds = np.concatenate(golds, axis=0).astype(np.float32)
tp = ((preds[:, 1] == 1) & (golds[:, 1] == 1)).astype(np.float32).sum()
tn = ((golds[:, 1] == 1) & (preds[:, 1] != 1)).astype(np.float32).sum()
fp = ((preds[:, 1] == 1) & (golds[:, 1] != 1)).astype(np.float32).sum()
precision = tp / (tp + fp + 1e-5)
recall = tp / (tp + tn + 1e-5)
f1 = 2 * precision * recall / (precision + recall + 1e-5)
output = {
tag + "_F1": f1 * 100,
tag + "_P": precision * 100,
tag + "_R": recall * 100
}
return f1, output
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", default="./dataset/cdr", type=str)
parser.add_argument("--transformer_type", default="bert", type=str)
parser.add_argument("--model_name_or_path", default="allenai/scibert_scivocab_cased", type=str)
parser.add_argument("--train_file", default="train_filter.data", type=str)
parser.add_argument("--dev_file", default="dev_filter.data", type=str)
parser.add_argument("--test_file", default="test_filter.data", type=str)
parser.add_argument("--save_path", default="", type=str)
parser.add_argument("--load_path", default="", type=str)
parser.add_argument("--config_name", default="", type=str,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", default="", type=str,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--max_seq_length", default=1024, type=int,
help="The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded.")
parser.add_argument("--train_batch_size", default=4, type=int,
help="Batch size for training.")
parser.add_argument("--test_batch_size", default=8, type=int,
help="Batch size for testing.")
parser.add_argument("--gradient_accumulation_steps", default=1, type=int,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--num_labels", default=1, type=int,
help="Max number of labels in the prediction.")
parser.add_argument("--learning_rate", default=2e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--adam_epsilon", default=1e-6, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--warmup_ratio", default=0.06, type=float,
help="Warm up ratio for Adam.")
parser.add_argument("--num_train_epochs", default=30.0, type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--evaluation_steps", default=-1, type=int,
help="Number of training steps between evaluations.")
parser.add_argument("--seed", type=int, default=66,
help="random seed for initialization.")
parser.add_argument("--num_class", type=int, default=2,
help="Number of relation types in dataset.")
parser.add_argument("--unet_in_dim", type=int, default=3,
help="unet_in_dim.")
parser.add_argument("--unet_out_dim", type=int, default=256,
help="unet_out_dim.")
parser.add_argument("--down_dim", type=int, default=256,
help="down_dim.")
parser.add_argument("--channel_type", type=str, default='',
help="unet_out_dim.")
parser.add_argument("--log_dir", type=str, default='',
help="log.")
parser.add_argument("--bert_lr", default=5e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--max_height", type=int, default=42,
help="log.")
args = parser.parse_args()
# wandb.init(project="CDR")
print(args)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
args.n_gpu = torch.cuda.device_count()
args.device = device
config = AutoConfig.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
num_labels=args.num_class,
)
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
)
read = read_cdr if "cdr" in args.data_dir else read_gda
train_file = os.path.join(args.data_dir, args.train_file)
dev_file = os.path.join(args.data_dir, args.dev_file)
test_file = os.path.join(args.data_dir, args.test_file)
train_features = read(train_file,'./train_cache', tokenizer, max_seq_length=args.max_seq_length)
dev_features = read(dev_file,'./dev_cache', tokenizer, max_seq_length=args.max_seq_length)
test_features = read(test_file,'./test_cache', tokenizer, max_seq_length=args.max_seq_length)
model = AutoModel.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
)
config.cls_token_id = tokenizer.cls_token_id
config.sep_token_id = tokenizer.sep_token_id
config.transformer_type = args.transformer_type
set_seed(args)
model = DocREModel(config, args, model, num_labels=args.num_labels)
model.to(0)
if args.load_path == "":
train(args, model, train_features, dev_features, test_features)
else:
# model = amp.initialize(model, opt_level="O1", verbosity=0)
model.load_state_dict(torch.load(args.load_path))
dev_score, dev_output = evaluate(args, model, dev_features, tag="dev")
test_score, test_output = evaluate(args, model, test_features, tag="test")
print(dev_output)
print(test_output)
if __name__ == "__main__":
torch.cuda.empty_cache()
main()