-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy pathdecode_head.py
220 lines (189 loc) · 8.14 KB
/
decode_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import mmcv
import copy
import torch
import numpy as np
import torch.nn as nn
from abc import ABCMeta, abstractmethod
from mmcv.runner import BaseModule, auto_fp16, force_fp32
from depth.ops import resize
from depth.models.builder import build_loss
class DepthBaseDecodeHead(BaseModule, metaclass=ABCMeta):
"""Base class for BaseDecodeHead.
Args:
in_channels (List): Input channels.
channels (int): Channels after modules, before conv_depth.
conv_cfg (dict|None): Config of conv layers. Default: None.
act_cfg (dict): Config of activation layers.
Default: dict(type='ReLU')
loss_decode (dict): Config of decode loss.
Default: dict(type='SigLoss').
sampler (dict|None): The config of depth map sampler.
Default: None.
align_corners (bool): align_corners argument of F.interpolate.
Default: False.
min_depth (int): Min depth in dataset setting.
Default: 1e-3.
max_depth (int): Max depth in dataset setting.
Default: None.
norm_cfg (dict|None): Config of norm layers.
Default: None.
classify (bool): Whether predict depth in a cls.-reg. manner.
Default: False.
n_bins (int): The number of bins used in cls. step.
Default: 256.
bins_strategy (str): The discrete strategy used in cls. step.
Default: 'UD'.
norm_strategy (str): The norm strategy on cls. probability
distribution. Default: 'linear'
scale_up (str): Whether predict depth in a scale-up manner.
Default: False.
"""
def __init__(self,
in_channels,
channels=96,
conv_cfg=None,
act_cfg=dict(type='ReLU'),
loss_decode=dict(
type='SigLoss',
valid_mask=True,
loss_weight=10),
sampler=None,
align_corners=False,
min_depth=1e-3,
max_depth=None,
norm_cfg=None,
classify=False,
n_bins=256,
bins_strategy='UD',
norm_strategy='linear',
scale_up=False,
):
super(DepthBaseDecodeHead, self).__init__()
self.in_channels = in_channels
self.channels = channels
self.conv_cfg = conv_cfg
self.act_cfg = act_cfg
self.loss_decode = build_loss(loss_decode)
self.align_corners = align_corners
self.min_depth = min_depth
self.max_depth = max_depth
self.norm_cfg = norm_cfg
self.classify = classify
self.n_bins = n_bins
self.scale_up = scale_up
if self.classify:
assert bins_strategy in ["UD", "SID"], "Support bins_strategy: UD, SID"
assert norm_strategy in ["linear", "softmax", "sigmoid"], "Support norm_strategy: linear, softmax, sigmoid"
self.bins_strategy = bins_strategy
self.norm_strategy = norm_strategy
self.softmax = nn.Softmax(dim=1)
self.conv_depth = nn.Conv2d(channels, n_bins, kernel_size=3, padding=1, stride=1)
else:
self.conv_depth = nn.Conv2d(channels, 1, kernel_size=3, padding=1, stride=1)
self.fp16_enabled = False
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def extra_repr(self):
"""Extra repr."""
s = f'align_corners={self.align_corners}'
return s
@auto_fp16()
@abstractmethod
def forward(self, inputs):
"""Placeholder of forward function."""
pass
@auto_fp16()
@abstractmethod
def forward(self, inputs, img_metas):
"""Placeholder of forward function."""
pass
def forward_train(self, img, inputs, img_metas, depth_gt, train_cfg):
"""Forward function for training.
Args:
inputs (list[Tensor]): List of multi-level img features.
img_metas (list[dict]): List of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys see
`depth/datasets/pipelines/formatting.py:Collect`.
depth_gt (Tensor): GT depth
train_cfg (dict): The training config.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
depth_pred = self.forward(inputs, img_metas)
losses = self.losses(depth_pred, depth_gt)
log_imgs = self.log_images(img[0], depth_pred[0], depth_gt[0], img_metas[0])
losses.update(**log_imgs)
return losses
def forward_test(self, inputs, img_metas, test_cfg):
"""Forward function for testing.
Args:
inputs (list[Tensor]): List of multi-level img features.
img_metas (list[dict]): List of image info dict where each dict
has: 'img_shape', 'scale_factor', 'flip', and may also contain
'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.
For details on the values of these keys see
`depth/datasets/pipelines/formatting.py:Collect`.
test_cfg (dict): The testing config.
Returns:
Tensor: Output depth map.
"""
return self.forward(inputs, img_metas)
def depth_pred(self, feat):
"""Prediction each pixel."""
if self.classify:
logit = self.conv_depth(feat)
if self.bins_strategy == 'UD':
bins = torch.linspace(self.min_depth, self.max_depth, self.n_bins, device=feat.device)
elif self.bins_strategy == 'SID':
bins = torch.logspace(self.min_depth, self.max_depth, self.n_bins, device=feat.device)
# following Adabins, default linear
if self.norm_strategy == 'linear':
logit = torch.relu(logit)
eps = 0.1
logit = logit + eps
logit = logit / logit.sum(dim=1, keepdim=True)
elif self.norm_strategy == 'softmax':
logit = torch.softmax(logit, dim=1)
elif self.norm_strategy == 'sigmoid':
logit = torch.sigmoid(logit)
logit = logit / logit.sum(dim=1, keepdim=True)
output = torch.einsum('ikmn,k->imn', [logit, bins]).unsqueeze(dim=1)
else:
if self.scale_up:
output = self.sigmoid(self.conv_depth(feat)) * self.max_depth
else:
output = self.relu(self.conv_depth(feat)) + self.min_depth
return output
@force_fp32(apply_to=('depth_pred', ))
def losses(self, depth_pred, depth_gt):
"""Compute depth loss."""
loss = dict()
depth_pred = resize(
input=depth_pred,
size=depth_gt.shape[2:],
mode='bilinear',
align_corners=self.align_corners,
warning=False)
loss['loss_depth'] = self.loss_decode(
depth_pred,
depth_gt)
return loss
def log_images(self, img_path, depth_pred, depth_gt, img_meta):
show_img = copy.deepcopy(img_path.detach().cpu().permute(1, 2, 0))
show_img = show_img.numpy().astype(np.float32)
show_img = mmcv.imdenormalize(show_img,
img_meta['img_norm_cfg']['mean'],
img_meta['img_norm_cfg']['std'],
img_meta['img_norm_cfg']['to_rgb'])
show_img = np.clip(show_img, 0, 255)
show_img = show_img.astype(np.uint8)
show_img = show_img[:, :, ::-1]
show_img = show_img.transpose(0, 2, 1)
show_img = show_img.transpose(1, 0, 2)
depth_pred = depth_pred / torch.max(depth_pred)
depth_gt = depth_gt / torch.max(depth_gt)
depth_pred_color = copy.deepcopy(depth_pred.detach().cpu())
depth_gt_color = copy.deepcopy(depth_gt.detach().cpu())
return {"img_rgb": show_img, "img_depth_pred": depth_pred_color, "img_depth_gt": depth_gt_color}