-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_ssl.py
305 lines (262 loc) · 12.7 KB
/
train_ssl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
from easydl import *
import argparse, math, time, json, os
from lib import wrn_d, transform
from config import config
from build_dataset import *
parser = argparse.ArgumentParser()
parser.add_argument("--alg", "-a", default="PI", type=str, help="ssl algorithm : [supervised, PI, MT, VAT, PL]")
parser.add_argument("--em", default=0.2, type=float, help="coefficient of entropy minimization. If you try VAT + EM, set 0.06")
parser.add_argument("--validation", default=500, type=int, help="validate at this interval (default 25000)")
parser.add_argument("--dataset", "-d", default="svhn", type=str, help="dataset name : [svhn, cifar10, mnist]")
parser.add_argument("--n_labels", "-n", default=2400, type=int, help="the number of labeled data")
parser.add_argument("--n_unlabels", "-u", default=20000, type=int, help="the number of unlabeled data")
parser.add_argument('--n_valid', default=5000, type=int)
parser.add_argument("--root", "-r", default="data", type=str, help="dataset dir")
parser.add_argument("--output", "-o", default="./exp_res", type=str, help="output dir")
parser.add_argument('--temper', default=0.8, type=float, help='temperature scaling')
parser.add_argument("--ratio", "-rat", default=0.0, type=float, help="ratio for class mismatch")
parser.add_argument("--threshold", "-th", default=1-1e-3, type=float, help="threshold")
parser.add_argument("--gpus", default=1, type=int, help="number of GPUs") # using 2 GPUs.
args = parser.parse_args()
# calculate softmax score
def cal_smscore(outputs, temper):
# Using temperature scaling
nnOutputs = outputs / temper
# Calculating the confidence after adding perturbations
nnOutputs = nnOutputs - torch.max(nnOutputs, 1, keepdim=True).values
nnOutputs = torch.exp(nnOutputs) / torch.sum(torch.exp(nnOutputs), 1, keepdim=True)
smscore = torch.max(nnOutputs, 1).values
smscore -= smscore.min(0).values
smscore = smscore / (smscore.max(0).values - smscore.min(0).values)
return smscore
# calculate prediction margin
def cal_pred_weight(outputs):
n = len(outputs)
nnOutputs = outputs - torch.max(outputs, 1, keepdim=True).values
nnOutputs = torch.exp(nnOutputs) / torch.sum(torch.exp(nnOutputs), 1, keepdim=True)
first_score = torch.max(nnOutputs, 1, keepdim=True).values
tmp = torch.zeros_like(nnOutputs)
tmp[torch.arange(n), torch.argmax(nnOutputs, 1)] = nnOutputs[torch.arange(n), torch.argmax(nnOutputs, 1)]
outputs_ = nnOutputs - tmp
second_score = torch.max(outputs_, 1, keepdim=True).values
pred_margin = torch.sub(first_score, second_score)
pred_margin -= pred_margin.min(0).values
pred_margin = pred_margin / (pred_margin.max(0).values - pred_margin.min(0).values)
return pred_margin
def weight_norm(weight):
mean = torch.mean(weight)
weight_norm = weight / mean
return weight_norm
def combine_weight(w_c, w_d):
var_c = w_c.var()
var_d = w_d.var()
weight = var_d / (var_d + var_c) * w_d + var_c / (var_d + var_c) * w_c
return weight
if torch.cuda.is_available():
device = "cuda"
torch.backends.cudnn.benchmark = True
else:
device = "cpu"
if args.gpus < 1:
import os
os.environ["CUDA_VISIBLE_DEVICES"] = ""
gpu_ids = []
device = "cpu"
else:
gpu_ids = select_GPUs(args.gpus)
device = gpu_ids[0]
condition = {}
exp_name = ""
print("dataset : {}".format(args.dataset))
condition["dataset"] = args.dataset
exp_name += str(args.dataset) + "_"
dataset_cfg = config[args.dataset]
transform_fn = transform.transform(*dataset_cfg["transform"]) # transform function (flip, crop, noise)
class RandomSampler(torch.utils.data.Sampler):
""" sampling without replacement """
def __init__(self, num_data, num_sample):
iterations = num_sample // num_data + 1
self.indices = torch.cat([torch.randperm(num_data) for _ in range(iterations)]).tolist()[:num_sample]
def __iter__(self):
return iter(self.indices)
def __len__(self):
return len(self.indices)
shared_cfg = config["shared"]
print("algorithm : {}".format(args.alg))
condition["algorithm"] = args.alg
exp_name += str(args.alg) + "_"
data_loaders = get_dataloaders(dataset=args.dataset, n_labels=args.n_labels, n_unlabels=args.n_unlabels, n_valid=args.n_valid,
l_batch_size=shared_cfg["batch_size"]//2, ul_batch_size=shared_cfg["batch_size"]//2,
test_batch_size=128, iterations=shared_cfg["iteration"], ratio=args.ratio)
l_loader = data_loaders['labeled']
u_loader = data_loaders['unlabeled']
test_loader = data_loaders['test']
val_loader = data_loaders['valid']
print("maximum iteration : {}".format(min(len(l_loader), len(u_loader))))
alg_cfg = config[args.alg]
print("parameters : ", alg_cfg)
condition["h_parameters"] = alg_cfg
model = wrn_d.WRN(2, dataset_cfg["num_classes"], transform_fn).to(device)
model = nn.DataParallel(model, device_ids=gpu_ids, output_device=device).train(True)
optimizer = optim.Adam(model.parameters(), lr=alg_cfg["lr"])
if args.alg == "VAT": # virtual adversarial training
from lib.algs.vat import VAT
ssl_obj = VAT(alg_cfg["eps"][args.dataset], alg_cfg["xi"], 1)
elif args.alg == "PL": # pseudo label
from lib.algs.pseudo_label import PL
ssl_obj = PL(alg_cfg["threashold"])
elif args.alg == "MT": # mean teacher
from lib.algs.mean_teacher import MT
t_model = wrn_d.WRN(2, dataset_cfg["num_classes"], transform_fn).to(device)
t_model.load_state_dict(model.state_dict())
ssl_obj = MT(t_model, alg_cfg["ema_factor"])
elif args.alg == "PI": # PI Model
from lib.algs.pimodel import PiModel
ssl_obj = PiModel()
elif args.alg == "supervised":
pass
else:
raise ValueError("{} is unknown algorithm".format(args.alg))
print()
iteration = 0
maximum_val_acc = 0
ens_ood = torch.zeros((args.n_unlabels,), requires_grad=False)
weight_all = torch.zeros((args.n_unlabels,), requires_grad=False).cuda()
iterations_per_epoch = (args.n_unlabels) // (shared_cfg["batch_size"]//2)
s = time.time()
for l_data, u_data in zip(l_loader, u_loader):
iteration += 1
l_input, target, _ = l_data
l_input, target = l_input.to(device).float(), target.to(device).long()
if args.alg != "supervised": # for ssl algorithm
u_input, u_target, u_idx = u_data
u_input, u_target = u_input.to(device).float(), u_target.to(device).long()
target = torch.cat([target, u_target], 0)
id_data_mask = u_target < 6
ood_data_mask = u_target >= 6
target[-len(u_target):] = -1
unlabeled_mask = (target == -1)
labeled_mask = (target != -1)
inputs = torch.cat([l_input, u_input], 0)
outputs, outputs_d = model(inputs)
smscore = cal_smscore(outputs.detach(), args.temper).cpu()
if iteration < iterations_per_epoch:
ens_ood[u_idx] = smscore[unlabeled_mask]
else:
ens_ood[u_idx] = 0.95 * ens_ood[u_idx] + 0.05 * smscore[unlabeled_mask]
ood_mask = (ens_ood[u_idx] < args.threshold).to(device)
id_mask = (ens_ood[u_idx] >= args.threshold).to(device)
labeled_mask[-len(u_target):] = id_mask
outputs_d = outputs_d - outputs_d.min(0).values
domain_weight = outputs_d / (outputs_d.max(0).values - outputs_d.min(0).values)
domain_weight = weight_norm(domain_weight).squeeze()
class_weight = cal_pred_weight(outputs)
class_weight = weight_norm(class_weight).squeeze()
weight = combine_weight(class_weight[-len(u_target):], domain_weight[-len(u_target):])
weight_all[u_idx] = weight
if iteration < 50000:
adv_coef = 0
adv_loss = torch.zeros(1).to(device)
else:
adv_coef = math.exp(-5 * (1 - min((iteration - 50000)/500000, 1))**2)
weight = weight_all[u_idx]
utr_mask = weight < 0.95
weight[utr_mask] = 0
tmp = weight * nn.BCELoss(reduction='none')(outputs_d[-len(u_target):][ood_mask], torch.zeros_like(outputs_d[-len(u_target):][ood_mask]))
adv_loss = torch.mean(tmp)
adv_loss += nn.BCELoss()(outputs_d[id_mask], torch.ones_like(outputs_d[id_mask])).data[0]
adv_loss = adv_loss * adv_coef
# ramp up exp(-5(1 - t)^2)
coef = alg_cfg["consis_coef"] * math.exp(-5 * (1 - min(iteration/shared_cfg["warmup"], 1))**2)
ssl_loss = ssl_obj(inputs, outputs.detach(), model, labeled_mask.float()) * coef
else:
output, _ = model(l_input)
coef = 0
ssl_loss = torch.zeros(1).to(device)
# supervised loss
cls_loss = F.cross_entropy(outputs, target, reduction="none", ignore_index=-1).mean()
loss = cls_loss + ssl_loss + adv_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
if args.alg == "MT":
# parameter update with exponential moving average
ssl_obj.moving_average(model.parameters())
# display
if iteration == 1 or (iteration % 100) == 0:
wasted_time = time.time() - s
rest = (shared_cfg["iteration"] - iteration)/100 * wasted_time / 60
print("it[{}/{}] clsloss{:.2e} SSLloss{:.2e} coef{:.2f} advloss{:.2e} advco{:.2f} tim{:.1f} it/sec rst{:.1f}min lr{:.2e} idnum{} oodnum{}".format(
iteration, shared_cfg["iteration"], cls_loss.item(), ssl_loss.item(), coef, adv_loss.item(), adv_coef, 100 / wasted_time, rest, optimizer.param_groups[0]["lr"], id_mask.float().sum(), ood_mask.float().sum() ),
"\r", end="")
s = time.time()
del inputs, l_input, u_input, id_data_mask, ood_data_mask, labeled_mask, unlabeled_mask, smscore, ood_mask, id_mask, outputs_d, domain_weight, class_weight, weight
torch.cuda.empty_cache()
# validation
if (iteration % args.validation) == 0 or iteration == shared_cfg["iteration"]:
with torch.no_grad():
model.eval()
print()
print("### validation ###")
sum_acc = 0.
s = time.time()
tot = 0
for j, data in enumerate(val_loader):
input, target, _ = data
input, target = input.to(device).float(), target.to(device).long()
output, _ = model(input)
pred_label = output.max(1)[1]
sum_acc += (pred_label == target).float().sum()
tot += pred_label.size(0)
if ((j+1) % 10) == 0:
d_p_s = 10/(time.time()-s)
print("[{}/{}] time : {:.1f} data/sec, rest : {:.2f} sec".format(
j+1, len(val_loader), d_p_s, (len(val_loader) - j-1)/d_p_s
), "\r", end="")
s = time.time()
acc = sum_acc / tot
print()
print("varidation accuracy : {}".format(acc))
# test
if maximum_val_acc < acc:
print("### test ###")
maximum_val_acc = acc
sum_acc = 0.
s = time.time()
tot = 0
for j, data in enumerate(test_loader):
input, target, _ = data
input, target = input.to(device).float(), target.to(device).long()
output, _ = model(input)
pred_label = output.max(1)[1]
sum_acc += (pred_label == target).float().sum()
tot += pred_label.size(0)
if ((j+1) % 10) == 0:
d_p_s = 100/(time.time()-s)
print("[{}/{}] time : {:.1f} data/sec, rest : {:.2f} sec".format(
j+1, len(test_loader), d_p_s, (len(test_loader) - j-1)/d_p_s
), "\r", end="")
s = time.time()
print()
test_acc = sum_acc / tot
print("test accuracy : {}".format(test_acc))
# torch.save(model.state_dict(), os.path.join(args.output, "model.pth"))
model.train()
s = time.time()
# lr decay
if iteration == shared_cfg["lr_decay_iter"]:
optimizer.param_groups[0]["lr"] *= shared_cfg["lr_decay_factor"]
print("test acc : {}".format(test_acc))
condition["test_acc"] = test_acc.item()
exp_name += str(int(time.time())) # unique ID
if not os.path.exists(args.output):
os.mkdir(args.output)
with open(os.path.join(args.output, exp_name + ".json"), "w") as f:
json.dump(condition, f)