forked from spragunr/deep_q_rl
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathlauncher.py
executable file
·344 lines (315 loc) · 11 KB
/
launcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
#! /usr/bin/env python
"""This script handles reading command line arguments and starting the
training process. It shouldn't be executed directly; it is used by
run_nips.py or run_nature.py.
"""
import os
import argparse
import logging
import gym
import numpy as np
import mxnet as mx
import ale_experiment
import ale_agent
import q_network
def process_args(args, defaults, description):
"""
Handle the command line.
args - list of command line arguments (not including executable name)
defaults - a name space with variables corresponding to each of
the required default command line values.
description - a string to display at the top of the help message.
"""
parser = argparse.ArgumentParser(description=description)
parser.add_argument(
'--env',
dest="rom",
default=defaults.ENV,
help='Game to run (default: %(default)s)')
parser.add_argument(
'-e',
'--epochs',
dest="epochs",
type=int,
default=defaults.EPOCHS,
help='Number of training epochs (default: %(default)s)')
parser.add_argument(
'-s',
'--steps-per-epoch',
dest="steps_per_epoch",
type=int,
default=defaults.STEPS_PER_EPOCH,
help='Number of steps per epoch (default: %(default)s)')
parser.add_argument(
'-t',
'--test-length',
dest="steps_per_test",
type=int,
default=defaults.STEPS_PER_TEST,
help='Number of steps per test (default: %(default)s)')
parser.add_argument(
'--display-screen',
dest="display_screen",
action='store_true',
default=False,
help='Show the game screen.')
parser.add_argument(
'--experiment-prefix',
dest="experiment_prefix",
default=None,
help='Experiment name prefix '
'(default is the name of the game)')
parser.add_argument(
'--frame-skip',
dest="frame_skip",
default=defaults.FRAME_SKIP,
type=int,
help='Every how many frames to process '
'(default: %(default)s)')
parser.add_argument(
'--repeat-action-probability',
dest="repeat_action_probability",
default=defaults.REPEAT_ACTION_PROBABILITY,
type=float,
help=('Probability that action choice will be ' +
'ignored (default: %(default)s)'))
parser.add_argument(
'--update-rule',
dest="update_rule",
type=str,
default=defaults.UPDATE_RULE,
help=('deepmind_rmsprop|rmsprop|sgd ' + '(default: %(default)s)'))
parser.add_argument(
'--batch-accumulator',
dest="batch_accumulator",
type=str,
default=defaults.BATCH_ACCUMULATOR,
help=('sum|mean (default: %(default)s)'))
parser.add_argument(
'--learning-rate',
dest="learning_rate",
type=float,
default=defaults.LEARNING_RATE,
help='Learning rate (default: %(default)s)')
parser.add_argument(
'--rms-decay',
dest="rms_decay",
type=float,
default=defaults.RMS_DECAY,
help='Decay rate for rms_prop (default: %(default)s)')
parser.add_argument(
'--rms-epsilon',
dest="rms_epsilon",
type=float,
default=defaults.RMS_EPSILON,
help='Denominator epsilson for rms_prop ' + '(default: %(default)s)')
parser.add_argument(
'--momentum',
type=float,
default=defaults.MOMENTUM,
help=(
'Momentum term for Nesterov momentum. ' + '(default: %(default)s)'))
parser.add_argument(
'--clip-delta',
dest="clip_delta",
type=float,
default=defaults.CLIP_DELTA,
help=('Max absolute value for Q-update delta value. ' +
'(default: %(default)s)'))
parser.add_argument(
'--discount',
type=float,
default=defaults.DISCOUNT,
help='Discount rate')
parser.add_argument(
'--epsilon-start',
dest="epsilon_start",
type=float,
default=defaults.EPSILON_START,
help=('Starting value for epsilon. ' + '(default: %(default)s)'))
parser.add_argument(
'--epsilon-min',
dest="epsilon_min",
type=float,
default=defaults.EPSILON_MIN,
help='Minimum epsilon. (default: %(default)s)')
parser.add_argument(
'--epsilon-decay',
dest="epsilon_decay",
type=float,
default=defaults.EPSILON_DECAY,
help=(
'Number of steps to minimum epsilon. ' + '(default: %(default)s)'))
parser.add_argument(
'--phi-length',
dest="phi_length",
type=int,
default=defaults.PHI_LENGTH,
help=('Number of recent frames used to represent ' +
'state. (default: %(default)s)'))
parser.add_argument(
'--max-history',
dest="replay_memory_size",
type=int,
default=defaults.REPLAY_MEMORY_SIZE,
help=('Maximum number of steps stored in replay ' +
'memory. (default: %(default)s)'))
parser.add_argument(
'--batch-size',
dest="batch_size",
type=int,
default=defaults.BATCH_SIZE,
help='Batch size. (default: %(default)s)')
parser.add_argument(
'--network-type',
dest="network_type",
type=str,
default=defaults.NETWORK_TYPE,
help=('nips_cuda|nips_dnn|nature_cuda|nature_dnn' +
'|linear (default: %(default)s)'))
parser.add_argument(
'--freeze-interval',
dest="freeze_interval",
type=int,
default=defaults.FREEZE_INTERVAL,
help=('Interval between target freezes. ' + '(default: %(default)s)'))
parser.add_argument(
'--update-frequency',
dest="update_frequency",
type=int,
default=defaults.UPDATE_FREQUENCY,
help=('Number of actions before each SGD update. ' +
'(default: %(default)s)'))
parser.add_argument(
'--replay-start-size',
dest="replay_start_size",
type=int,
default=defaults.REPLAY_START_SIZE,
help=('Number of random steps before training. ' +
'(default: %(default)s)'))
parser.add_argument(
'--resize-method',
dest="resize_method",
type=str,
default=defaults.RESIZE_METHOD,
help=('crop|scale (default: %(default)s)'))
parser.add_argument(
'--nn-file',
dest="nn_file",
type=str,
default=None,
help='Pickle file containing trained net.')
parser.add_argument(
'--death-ends-episode',
dest="death_ends_episode",
type=str,
default=defaults.DEATH_ENDS_EPISODE,
help=('true|false (default: %(default)s)'))
parser.add_argument(
'--max-start-nullops',
dest="max_start_nullops",
type=int,
default=defaults.MAX_START_NULLOPS,
help=('Maximum number of null-ops at the start ' +
'of games. (default: %(default)s)'))
parser.add_argument(
'--deterministic',
dest="deterministic",
type=bool,
default=defaults.DETERMINISTIC,
help=('Whether to use deterministic parameters ' +
'for learning. (default: %(default)s)'))
parser.add_argument(
'--cudnn_deterministic',
dest="cudnn_deterministic",
type=bool,
default=defaults.CUDNN_DETERMINISTIC,
help=(
'Whether to use deterministic backprop. ' + '(default: %(default)s)'
))
parser.add_argument('--ctx', type=str, default='0', help=('The gpu to use'))
parser.add_argument(
'--double',
type=bool,
default=False,
help=('to use double q learning or not'))
parameters = parser.parse_args(args)
if parameters.experiment_prefix is None:
parameters.experiment_prefix = 'logs/' + parameters.rom
if parameters.death_ends_episode == 'true':
parameters.death_ends_episode = True
elif parameters.death_ends_episode == 'false':
parameters.death_ends_episode = False
else:
raise ValueError("--death-ends-episode must be true or false")
if parameters.double:
parameters.epsilon_min = 0.01
parameters.freeze_interval = 30000
if parameters.freeze_interval > 0:
# This addresses an inconsistency between the Nature paper and
# the Deepmind code. The paper states that the target network
# update frequency is "measured in the number of parameter
# updates". In the code it is actually measured in the number
# of action choices.
parameters.freeze_interval = (parameters.freeze_interval //
parameters.update_frequency)
return parameters
def launch(args, defaults, description):
"""
Execute a complete training run.
"""
logging.basicConfig(level=logging.INFO)
parameters = process_args(args, defaults, description)
if parameters.deterministic:
rng = np.random.RandomState(123456)
else:
rng = np.random.RandomState()
#ctx = [mx.gpu(int(idx)) for idx in parameters.ctx.split(',')]
ctx = mx.gpu(int(parameters.ctx))
ale = gym.make(parameters.rom).env.ale
ale.setInt(b'random_seed', rng.randint(1000))
if parameters.display_screen:
import sys
if sys.platform == 'darwin':
import pygame
pygame.init()
ale.setBool(b'sound', False) # Sound doesn't work on OSX
ale.setBool(b'display_screen', parameters.display_screen)
ale.setFloat(b'repeat_action_probability',
parameters.repeat_action_probability)
num_actions = len(ale.getMinimalActionSet())
network = q_network.DeepQLearner(
defaults.RESIZED_WIDTH,
defaults.RESIZED_HEIGHT,
num_actions,
parameters.phi_length,
parameters.discount,
parameters.learning_rate,
parameters.rms_decay,
parameters.rms_epsilon,
parameters.momentum,
parameters.clip_delta,
parameters.freeze_interval,
parameters.batch_size,
parameters.network_type,
parameters.update_rule,
parameters.batch_accumulator,
rng,
double=parameters.double,
ctx=ctx)
if parameters.nn_file is not None:
net_params = mx.nd.load(parameters.nn_file)
network.load_weights(net_params)
agent = ale_agent.NeuralAgent(
network, parameters.epsilon_start, parameters.epsilon_min,
parameters.epsilon_decay, parameters.replay_memory_size,
parameters.experiment_prefix, parameters.replay_start_size,
parameters.update_frequency, rng, double=parameters.double)
experiment = ale_experiment.ALEExperiment(
ale, agent, defaults.RESIZED_WIDTH, defaults.RESIZED_HEIGHT,
parameters.resize_method, parameters.epochs, parameters.steps_per_epoch,
parameters.steps_per_test, parameters.frame_skip,
parameters.death_ends_episode, parameters.max_start_nullops, rng)
experiment.run()
if __name__ == '__main__':
pass