-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathtest_forward.py
53 lines (46 loc) · 1.46 KB
/
test_forward.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import torch
import torch.nn as nn
import sys
from vit_pytorch import ViT_face
from util.utils import get_val_data, perform_val, perform_val_deit, buffer_val, test_forward
from IPython import embed
import sklearn
import cv2
import numpy as np
from image_iter_yy import FaceDataset
import torch.utils.data as data
import argparse
import os
def main(args):
print(args)
DEVICE = torch.device("cuda:0")
DATA_ROOT = './Data/ms1m-retinaface-t1/'
with open(os.path.join(DATA_ROOT, 'property'), 'r') as f:
NUM_CLASS, h, w = [int(i) for i in f.read().split(',')]
model = ViT_face(
image_size=112,
patch_size=8,
loss_type='CosFace',
GPU_ID= DEVICE,
num_class=NUM_CLASS,
dim=512,
depth=20,
heads=8,
mlp_dim=2048,
dropout=0.1,
emb_dropout=0.1
)
model_root = args.model
model.load_state_dict(torch.load(model_root))
TARGET = [i for i in args.target.split(',')]
vers = get_val_data('./eval/', TARGET)
for ver in vers:
name, data_set, issame = ver
time = test_forward(DEVICE, model, data_set)
def parse_arguments(argv):
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='', help='pretrained model')
parser.add_argument('--target', default='lfw', help='')
return parser.parse_args(argv)
if __name__ == '__main__':
main(parse_arguments(sys.argv[1:]))