-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathair_cargo_problems.py
executable file
·201 lines (175 loc) · 7.5 KB
/
air_cargo_problems.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from aimacode.planning import Action
from aimacode.utils import expr
from _utils import (
FluentState, encode_state, decode_state, create_expressions, make_relations
)
from planning_problem import BasePlanningProblem
##############################################################################
# YOU DO NOT NEED TO MODIFY CODE IN THIS FILE #
##############################################################################
class AirCargoProblem(BasePlanningProblem):
def __init__(self, cargos, planes, airports, initial, goal):
"""
Parameters
----------
cargos : list
A list of names for cargo entities in the problem domain
planes : list
A list of names for airplane entities in the problem domain
airports : list
A list of names for airport entities in the problem domain
initial : FluentState
A representation of the initial problem state as a collection
of positive and negative literals (each literal fluent should
be an `aimacode.utils.Expr` instance)
goal : iterable
A collection of literal fluents describing the goal state of
the problem (each fluent should be an instance of the
`aimacode.utils.Expr` class)
"""
super().__init__(initial, goal)
self.cargos = cargos
self.planes = planes
self.airports = airports
self.actions_list = self.get_actions()
def get_actions(self):
""" This method creates concrete actions (no variables) for all actions
in the problem domain action schema and turns them into complete Action
objects as defined in the aimacode.planning module. It is computationally
expensive to call this method directly; however, it is called in the
constructor and the results cached in the `actions_list` property.
Returns
-------
list of Action objects
"""
def load_actions():
""" Create all concrete Load actions
Returns
-------
collection of Action objects
"""
loads = []
for c in self.cargos:
for p in self.planes:
for a in self.airports:
precond_pos = set([expr("At({}, {})".format(c, a)),
expr("At({}, {})".format(p, a))
])
precond_neg = set([])
effect_add = set([expr("In({}, {})".format(c, p))])
effect_rem = set([expr("At({}, {})".format(c, a))])
load = Action(expr("Load({}, {}, {})".format(c, p, a)),
[precond_pos, precond_neg],
[effect_add, effect_rem])
loads.append(load)
return loads
def unload_actions():
"""Create all concrete Unload actions
Returns
-------
collection of Action objects
"""
unloads = []
for c in self.cargos:
for p in self.planes:
for a in self.airports:
precond_pos = set([expr("In({}, {})".format(c, p)),
expr("At({}, {})".format(p, a)),
])
precond_neg = set([])
effect_add = set([expr("At({}, {})".format(c, a))])
effect_rem = set([expr("In({}, {})".format(c, p))])
unload = Action(expr("Unload({}, {}, {})".format(c, p, a)),
[precond_pos, precond_neg],
[effect_add, effect_rem])
unloads.append(unload)
return unloads
def fly_actions():
"""Create all concrete Fly actions
Returns
-------
collection of Action objects
"""
flys = []
for fr in self.airports:
for to in self.airports:
if fr != to:
for p in self.planes:
precond_pos = set([expr("At({}, {})".format(p, fr)),
])
precond_neg = set([])
effect_add = set([expr("At({}, {})".format(p, to))])
effect_rem = set([expr("At({}, {})".format(p, fr))])
fly = Action(expr("Fly({}, {}, {})".format(p, fr, to)),
[precond_pos, precond_neg],
[effect_add, effect_rem])
flys.append(fly)
return flys
return load_actions() + unload_actions() + fly_actions()
def air_cargo_p1():
cargos = ['C1', 'C2']
planes = ['P1', 'P2']
airports = ['JFK', 'SFO']
at_relations = make_relations('At', cargos + planes, airports)
in_relations = make_relations('In', cargos, planes)
pos = create_expressions([
'At(C1, SFO)',
'At(C2, JFK)',
'At(P1, SFO)',
'At(P2, JFK)',
])
init = FluentState(pos, [r for r in at_relations + in_relations if r not in pos])
goal = create_expressions(['At(C1, JFK)', 'At(C2, SFO)'])
return AirCargoProblem(cargos, planes, airports, init, goal)
def air_cargo_p2():
cargos = ['C1', 'C2', 'C3']
planes = ['P1', 'P2', 'P3']
airports = ['JFK', 'SFO', 'ATL']
at_relations = make_relations('At', cargos + planes, airports)
in_relations = make_relations('In', cargos, planes)
pos = create_expressions([
'At(C1, SFO)',
'At(C2, JFK)',
'At(C3, ATL)',
'At(P1, SFO)',
'At(P2, JFK)',
'At(P3, ATL)',
])
init = FluentState(pos, [r for r in at_relations + in_relations if r not in pos])
goal = create_expressions(['At(C1, JFK)', 'At(C2, SFO)', 'At(C3, SFO)'])
return AirCargoProblem(cargos, planes, airports, init, goal)
def air_cargo_p3():
cargos = ['C1', 'C2', 'C3', 'C4']
planes = ['P1', 'P2']
airports = ['JFK', 'SFO', 'ATL', 'ORD']
at_relations = make_relations('At', cargos + planes, airports)
in_relations = make_relations('In', cargos, planes)
pos = create_expressions([
'At(C1, SFO)',
'At(C2, JFK)',
'At(C3, ATL)',
'At(C4, ORD)',
'At(P1, SFO)',
'At(P2, JFK)',
])
init = FluentState(pos, [r for r in at_relations + in_relations if r not in pos])
goal = create_expressions(['At(C1, JFK)', 'At(C2, SFO)', 'At(C3, JFK)', 'At(C4, SFO)'])
return AirCargoProblem(cargos, planes, airports, init, goal)
def air_cargo_p4():
cargos = ['C1', 'C2', 'C3', 'C4', 'C5']
planes = ['P1', 'P2']
airports = ['JFK', 'SFO', 'ATL', 'ORD']
at_relations = make_relations('At', cargos + planes, airports)
in_relations = make_relations('In', cargos, planes)
pos = create_expressions([
'At(C1, SFO)',
'At(C2, JFK)',
'At(C3, ATL)',
'At(C4, ORD)',
'At(C5, ORD)',
'At(P1, SFO)',
'At(P2, JFK)',
])
init = FluentState(pos, [r for r in at_relations + in_relations if r not in pos])
goal = create_expressions(['At(C1, JFK)', 'At(C2, SFO)', 'At(C3, JFK)', 'At(C4, SFO)', 'At(C5, JFK)'])
return AirCargoProblem(cargos, planes, airports, init, goal)