Skip to content

PyTorch implementation of the paper: Crowdsampling The Plenoptic Function, ECCV 2020

Notifications You must be signed in to change notification settings

zhengqili/Crowdsampling-the-Plenoptic-Function

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Crowdsampling the Plenoptic Function

This repository contains a PyTorch implementation of the paper:

Crowdsampling The Plenoptic Function, ECCV 2020.

[Project Website] [Paper] [Video]

Zhengqi Li, Wenqi Xian, Abe Davis, Noah Snavely

Dataset

Download and unzip data from the links below:

Read more about the dataset in Readme file.

Dependency

The code is tested with Pytorch >= 1.2, the depdenency library includes

  • matplotlib
  • opencv
  • scikit-image
  • scipy
  • json

Pretrained Model

Download and unzip pretrained models from link.

To use the pretrained model, put the folders under the project root directory.

Test the pretrained model:

To run the evaluation, change variable "root" and "data_dir" in script evaluation.py to code directory and data directory respectively. The released code is not highly optimized, so you have to use 4 GPUs with > 11GB memory to run the evaluation.

Dataset Name Max depth FOV
Trevi Fountain trevi 4 70
The Pantheon pantheon 25 65
Top of the Rock rock 75 70
Sacre Coeur coeur 20 65
Piazza Navona navona 25 70

Follow the commands below:

   # Usage
   # python evaluation.py --dataset <name> --max_depth <max depth> --ref_fov <fov> --warp_src_img 1
   
   python evaluation.py --dataset trevi --max_depth 4 --ref_fov 70 --warp_src_img 1

Demo of novel view synthesis:

   # Usage
   # python wander.py --dataset <name> --max_depth <max depth> --ref_fov <fov> --warp_src_img 1 --where_add adain --img_a_name xxx --img_b_name xxx --img_c_name xxx
 
   python wander.py --dataset trevi --max_depth 4 --ref_fov 70 --warp_src_img 1  --where_add adain --img_a_name 5094768508_fa56e355bd.jpg  -
-img_b_name 34558526690_e5ba5b3b9d.jpg --img_c_name 34558526690_e5ba5b3b9d.jpg

where

  • img_a_name: image associated with rendering target viewpoint,
  • set img_b_name=img_c_name: image whose apperance we would like to condition on. The results will be saved in folder demo_wander_trevi.

By running the example command, you should get the following result:

Alt Text

Demo of apperance inteporlation:

   # Usage
   # python interpolate_appearance.py --dataset <name> --max_depth <max depth> --ref_fov <fov> --warp_src_img 1 --where_add adain --img_a_name xxx --img_b_name xxx --img_c_name xxx
 
   python interpolate_appearance.py --dataset trevi --max_depth 4 --ref_fov 70 --warp_src_img 1  --where_add adain --img_a_name 157303382_3ca2b644c9.jpg  --img_b_name 255196242_3f46e98a0f_o.jpg --img_c_name 157303382_3ca2b644c9.jpg

where

  • img_a_name: image of starting apperance
  • img_b_name: image of end apperance
  • img_c_name: image associated with rendering target viewpoint

Alt Text

Cite

Please cite our work if you find it useful:

@inproceedings{li2020crowdsampling,
  title={Crowdsampling the plenoptic function},
  author={Li, Zhengqi and Xian, Wenqi and Davis, Abe and Snavely, Noah},
  booktitle={European Conference on Computer Vision},
  pages={178--196},
  year={2020},
  organization={Springer}
}

License

This repository is released under the MIT license.

About

PyTorch implementation of the paper: Crowdsampling The Plenoptic Function, ECCV 2020

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages