-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdataset.py
197 lines (158 loc) · 6.98 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# -*- coding: utf-8 -*-
import os
import os.path
from queue import Queue
from threading import Thread
import cv2
import torch
import torch.utils.data
import numpy as np
from histogram import match_histograms
def get_loader(my_dataset, device, batch_size, num_workers, shuffle):
""" 根据dataset及设置,获取对应的 DataLoader """
my_loader = torch.utils.data.DataLoader(my_dataset, batch_size=batch_size, num_workers=num_workers,
shuffle=shuffle, pin_memory=True, persistent_workers=(num_workers > 0))
# if torch.cuda.is_available():
# my_loader = CudaDataLoader(my_loader, device=device)
return my_loader
class MatchHistogramsDataset(torch.utils.data.Dataset):
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif']
def __init__(self, root, transform=None, target_transform=None, is_match_histograms=False, match_mode=True,
b2a_prob=0.5, match_ratio=1.0):
""" 获取指定的两个文件夹下,两张图像numpy数组的Dataset """
assert len(root) == 2, f'root of MatchHistogramsDataset must has two dir!'
self.dataset_0 = DatasetFolder(root[0])
self.dataset_1 = DatasetFolder(root[1])
self.transform = transform
self.target_transform = target_transform
self.len_0 = len(self.dataset_0)
self.len_1 = len(self.dataset_1)
self.len = max(self.len_0, self.len_1)
self.is_match_histograms = is_match_histograms
self.match_mode = match_mode
assert self.match_mode in ('hsv', 'hsl', 'rgb'), f'match mode must in {self.match_mode}'
self.b2a_prob = b2a_prob
self.match_ratio = match_ratio
def __getitem__(self, index):
sample_0 = self.dataset_0[index] if index < self.len_0 else self.dataset_0[np.random.randint(self.len_0)]
sample_1 = self.dataset_1[index] if index < self.len_1 else self.dataset_1[np.random.randint(self.len_1)]
if self.is_match_histograms:
if self.match_mode == 'hsv':
sample_0 = cv2.cvtColor(sample_0, cv2.COLOR_RGB2HSV_FULL)
sample_1 = cv2.cvtColor(sample_1, cv2.COLOR_RGB2HSV_FULL)
elif self.match_mode == 'hsl':
sample_0 = cv2.cvtColor(sample_0, cv2.COLOR_RGB2HLS_FULL)
sample_1 = cv2.cvtColor(sample_1, cv2.COLOR_RGB2HLS_FULL)
if np.random.rand() < self.b2a_prob:
sample_1 = match_histograms(sample_1, sample_0, rate=self.match_ratio)
else:
sample_0 = match_histograms(sample_0, sample_1, rate=self.match_ratio)
if self.match_mode == 'hsv':
sample_0 = cv2.cvtColor(sample_0, cv2.COLOR_HSV2RGB_FULL)
sample_1 = cv2.cvtColor(sample_1, cv2.COLOR_HSV2RGB_FULL)
elif self.match_mode == 'hsl':
sample_0 = cv2.cvtColor(sample_0, cv2.COLOR_HLS2RGB_FULL)
sample_1 = cv2.cvtColor(sample_1, cv2.COLOR_HLS2RGB_FULL)
if self.transform is not None:
sample_0 = self.transform(sample_0)
sample_1 = self.transform(sample_1)
return sample_0, sample_1
def __len__(self):
return self.len
def __repr__(self):
fmt_str = f'MatchHistogramsDataset for: \n' \
f'{self.dataset_0.__repr__()} \n ' \
f'{self.dataset_1.__repr__()}'
return fmt_str
class DatasetFolder(torch.utils.data.Dataset):
IMG_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif']
def __init__(self, root, transform=None):
""" 获取指定文件夹下,单张图像numpy数组的Dataset """
samples = []
for sub_root, _, filenames in sorted(os.walk(root)):
for filename in sorted(filenames):
if os.path.splitext(filename)[-1].lower() in self.IMG_EXTENSIONS:
path = os.path.join(sub_root, filename)
samples.append(path)
if len(samples) == 0:
raise RuntimeError(f"Found 0 files in sub-folders of: {root}\n"
f"Supported extensions are: {','.join(self.IMG_EXTENSIONS)}")
self.root = root
self.samples = samples
self.transform = transform
def __getitem__(self, index):
path = self.samples[index]
sample = cv2.imread(path)[..., ::-1]
if self.transform is not None:
sample = self.transform(sample)
return sample
def __len__(self):
return len(self.samples)
def __repr__(self):
fmt_str = f'Dataset {self.__class__.__name__}\n'\
f' Number of data points: {self.__len__()}\n'\
f' Root Location: {self.root}\n'
tmp = ' Transforms (if any): '
trans_tmp = self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp))
fmt_str += f'{tmp}{trans_tmp}'
return fmt_str
class CudaDataLoader:
""" 异步预先将数据从CPU加载到GPU中 """
def __init__(self, loader, device, queue_size=2):
self.device = device
self.queue_size = queue_size
self.loader = loader
self.load_stream = torch.cuda.Stream(device=device)
self.queue = Queue(maxsize=self.queue_size)
self.idx = 0
self.worker = Thread(target=self.load_loop)
self.worker.setDaemon(True)
self.worker.start()
def load_loop(self):
""" 不断的将cuda数据加载到队列里 """
# The loop that will load into the queue in the background
torch.cuda.set_device(self.device)
while True:
for i, sample in enumerate(self.loader):
self.queue.put(self.load_instance(sample))
def load_instance(self, sample):
""" 将batch数据从CPU加载到GPU中 """
if torch.is_tensor(sample):
with torch.cuda.stream(self.load_stream):
return sample.to(self.device, non_blocking=True)
elif sample is None or type(sample) in (list, str):
return sample
elif isinstance(sample, dict):
return {k: self.load_instance(v) for k, v in sample.items()}
else:
return [self.load_instance(s) for s in sample]
def __iter__(self):
self.idx = 0
return self
def __next__(self):
# 加载线程挂了
if not self.worker.is_alive() and self.queue.empty():
self.idx = 0
self.queue.join()
self.worker.join()
raise StopIteration
# 一个epoch加载完了
elif self.idx >= len(self.loader):
self.idx = 0
raise StopIteration
# 下一个batch
else:
out = self.queue.get()
self.queue.task_done()
self.idx += 1
return out
def next(self):
return self.__next__()
def __len__(self):
return len(self.loader)
@property
def sampler(self):
return self.loader.sampler
@property
def dataset(self):
return self.loader.dataset