-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrain_AE.m
67 lines (59 loc) · 2.38 KB
/
train_AE.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
function [opt_theta, cost] = train_AE(input, theta, architecture, count_AE, option_AE)
%训练AE网络
% by 郑煜伟 Ewing 2016-04
% 函数 calc_AE_Batch 可以根据当前点计算 cost 和 gradient,但是步长不确定
% 这里,调用Mark Schmidt的包来优化迭代 步长:用了l-BFGS
% Mark Schmidt (http://www.di.ens.fr/~mschmidt/Software/minFunc.html) [仅供学术]
addpath minFunc/
options.Method = 'lbfgs'; % 其实不一定用L-BFGS,可以参考 On optimization methods for deep learning
options.maxIter = 100; % L-BFGS 的最大迭代代数
options.display = 'off';
% options.TolX = 1e-3;
% 判断该 countAE层 AE是否需要添加noise 以 使用denoising规则
[is_denoising, input_corrupted ] = denoising_switch(input, count_AE, option_AE);
if is_denoising
[opt_theta, cost] = minFunc(@(x) calc_AE_batch(input, x, architecture, option_AE, input_corrupted), ...
theta, options);
else
[opt_theta, cost] = minFunc(@(x) calc_AE_batch(input, x, architecture, option_AE), ...
theta, options);
end
end
function [is_denoising, input_corrupted] = denoising_switch(input, count_AE, option_AE)
%判断该层AE是否需要添加noise以使用denoising规则
% 返回 是否is_denoising的标志 及 噪声
% is_denoising: 是否使用 denoising 规则
% noise_layer: AE中添加噪声的层:'first_layer' or 'all_layers'
% noise_rate: 每一位添加噪声的概率
% noise_mode: 添加噪声的模式:'On_Off' or 'Guass'
% noise_mean: 高斯模式:均值
% noise_sigma: 高斯模式:标准差
is_denoising = 0;
input_corrupted = [];
if option_AE.is_denoising
switch option_AE.noise_layer
case 'first_layer'
if count_AE == 1
is_denoising = 1;
end
case 'all_layers'
is_denoising = 1;
otherwise
error( '错误的AE噪声层数!' );
end
if is_denoising
input_corrupted = input;
index_corrupted = rand(size(input)) < option_AE.noise_rate;
switch option_AE.noise_mode
case 'Guass'
% 均值为 noise_mean,标准差为 noise_sigma 的高斯噪声
noise = option_AE.noise_mean + ...
randn(size(input)) * option_AE.noise_sigma;
noise(~index_corrupted) = 0;
input_corrupted = input_corrupted + noise;
case 'On_Off'
input_corrupted(index_corrupted) = 0;
end
end
end
end