forked from stevenygd/PointFlow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
272 lines (236 loc) · 11.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import sys
import os
import torch
import torch.distributed as dist
import torch.nn as nn
import warnings
import torch.distributed
import numpy as np
import random
import faulthandler
import torch.multiprocessing as mp
import time
import scipy.misc
from models.networks import PointFlow
from torch import optim
from args import get_args
from torch.backends import cudnn
from utils import AverageValueMeter, set_random_seed, apply_random_rotation, save, resume, visualize_point_clouds
from tensorboardX import SummaryWriter
from datasets import get_datasets, init_np_seed
faulthandler.enable()
def main_worker(gpu, save_dir, ngpus_per_node, args):
# basic setup
cudnn.benchmark = True
args.gpu = gpu
if args.gpu is not None:
print("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.distributed:
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
if args.log_name is not None:
log_dir = "runs/%s" % args.log_name
else:
log_dir = "runs/time-%d" % time.time()
if not args.distributed or (args.rank % ngpus_per_node == 0):
writer = SummaryWriter(logdir=log_dir)
else:
writer = None
if not args.use_latent_flow: # auto-encoder only
args.prior_weight = 0
args.entropy_weight = 0
# multi-GPU setup
model = PointFlow(args)
if args.distributed: # Multiple processes, single GPU per process
if args.gpu is not None:
def _transform_(m):
return nn.parallel.DistributedDataParallel(
m, device_ids=[args.gpu], output_device=args.gpu, check_reduction=True)
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
model.multi_gpu_wrapper(_transform_)
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = 0
else:
assert 0, "DistributedDataParallel constructor should always set the single device scope"
elif args.gpu is not None: # Single process, single GPU per process
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
else: # Single process, multiple GPUs per process
def _transform_(m):
return nn.DataParallel(m)
model = model.cuda()
model.multi_gpu_wrapper(_transform_)
# resume checkpoints
start_epoch = 0
optimizer = model.make_optimizer(args)
if args.resume_checkpoint is None and os.path.exists(os.path.join(save_dir, 'checkpoint-latest.pt')):
args.resume_checkpoint = os.path.join(save_dir, 'checkpoint-latest.pt') # use the latest checkpoint
if args.resume_checkpoint is not None:
if args.resume_optimizer:
model, optimizer, start_epoch = resume(
args.resume_checkpoint, model, optimizer, strict=(not args.resume_non_strict))
else:
model, _, start_epoch = resume(
args.resume_checkpoint, model, optimizer=None, strict=(not args.resume_non_strict))
print('Resumed from: ' + args.resume_checkpoint)
# initialize datasets and loaders
tr_dataset, te_dataset = get_datasets(args)
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(tr_dataset)
else:
train_sampler = None
train_loader = torch.utils.data.DataLoader(
dataset=tr_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=0, pin_memory=True, sampler=train_sampler, drop_last=True,
worker_init_fn=init_np_seed)
test_loader = torch.utils.data.DataLoader(
dataset=te_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=0, pin_memory=True, drop_last=False,
worker_init_fn=init_np_seed)
# save dataset statistics
if not args.distributed or (args.rank % ngpus_per_node == 0):
np.save(os.path.join(save_dir, "train_set_mean.npy"), tr_dataset.all_points_mean)
np.save(os.path.join(save_dir, "train_set_std.npy"), tr_dataset.all_points_std)
np.save(os.path.join(save_dir, "train_set_idx.npy"), np.array(tr_dataset.shuffle_idx))
np.save(os.path.join(save_dir, "val_set_mean.npy"), te_dataset.all_points_mean)
np.save(os.path.join(save_dir, "val_set_std.npy"), te_dataset.all_points_std)
np.save(os.path.join(save_dir, "val_set_idx.npy"), np.array(te_dataset.shuffle_idx))
# load classification dataset if needed
if args.eval_classification:
from datasets import get_clf_datasets
def _make_data_loader_(dataset):
return torch.utils.data.DataLoader(
dataset=dataset, batch_size=args.batch_size, shuffle=False,
num_workers=0, pin_memory=True, drop_last=False,
worker_init_fn=init_np_seed
)
clf_datasets = get_clf_datasets(args)
clf_loaders = {
k: [_make_data_loader_(ds) for ds in ds_lst] for k, ds_lst in clf_datasets.items()
}
else:
clf_loaders = None
# initialize the learning rate scheduler
if args.scheduler == 'exponential':
scheduler = optim.lr_scheduler.ExponentialLR(optimizer, args.exp_decay)
elif args.scheduler == 'step':
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.epochs // 2, gamma=0.1)
elif args.scheduler == 'linear':
def lambda_rule(ep):
lr_l = 1.0 - max(0, ep - 0.5 * args.epochs) / float(0.5 * args.epochs)
return lr_l
scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_rule)
else:
assert 0, "args.schedulers should be either 'exponential' or 'linear'"
# main training loop
start_time = time.time()
entropy_avg_meter = AverageValueMeter()
latent_nats_avg_meter = AverageValueMeter()
point_nats_avg_meter = AverageValueMeter()
if args.distributed:
print("[Rank %d] World size : %d" % (args.rank, dist.get_world_size()))
print("Start epoch: %d End epoch: %d" % (start_epoch, args.epochs))
for epoch in range(start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
# adjust the learning rate
if (epoch + 1) % args.exp_decay_freq == 0:
scheduler.step(epoch=epoch)
if writer is not None:
writer.add_scalar('lr/optimizer', scheduler.get_lr()[0], epoch)
# train for one epoch
for bidx, data in enumerate(train_loader):
idx_batch, tr_batch, te_batch = data['idx'], data['train_points'], data['test_points']
step = bidx + len(train_loader) * epoch
model.train()
if args.random_rotate:
tr_batch, _, _ = apply_random_rotation(
tr_batch, rot_axis=train_loader.dataset.gravity_axis)
inputs = tr_batch.cuda(args.gpu, non_blocking=True)
out = model(inputs, optimizer, step, writer)
entropy, prior_nats, recon_nats = out['entropy'], out['prior_nats'], out['recon_nats']
entropy_avg_meter.update(entropy)
point_nats_avg_meter.update(recon_nats)
latent_nats_avg_meter.update(prior_nats)
if step % args.log_freq == 0:
duration = time.time() - start_time
start_time = time.time()
print("[Rank %d] Epoch %d Batch [%2d/%2d] Time [%3.2fs] Entropy %2.5f LatentNats %2.5f PointNats %2.5f"
% (args.rank, epoch, bidx, len(train_loader), duration, entropy_avg_meter.avg,
latent_nats_avg_meter.avg, point_nats_avg_meter.avg))
# evaluate on the validation set
if not args.no_validation and (epoch + 1) % args.val_freq == 0:
from utils import validate
validate(test_loader, model, epoch, writer, save_dir, args, clf_loaders=clf_loaders)
# save visualizations
if (epoch + 1) % args.viz_freq == 0:
# reconstructions
model.eval()
samples = model.reconstruct(inputs)
results = []
for idx in range(min(10, inputs.size(0))):
res = visualize_point_clouds(samples[idx], inputs[idx], idx,
pert_order=train_loader.dataset.display_axis_order)
results.append(res)
res = np.concatenate(results, axis=1)
scipy.misc.imsave(os.path.join(save_dir, 'images', 'tr_vis_conditioned_epoch%d-gpu%s.png' % (epoch, args.gpu)),
res.transpose((1, 2, 0)))
if writer is not None:
writer.add_image('tr_vis/conditioned', torch.as_tensor(res), epoch)
# samples
if args.use_latent_flow:
num_samples = min(10, inputs.size(0))
num_points = inputs.size(1)
_, samples = model.sample(num_samples, num_points)
results = []
for idx in range(num_samples):
res = visualize_point_clouds(samples[idx], inputs[idx], idx,
pert_order=train_loader.dataset.display_axis_order)
results.append(res)
res = np.concatenate(results, axis=1)
scipy.misc.imsave(os.path.join(save_dir, 'images', 'tr_vis_conditioned_epoch%d-gpu%s.png' % (epoch, args.gpu)),
res.transpose((1, 2, 0)))
if writer is not None:
writer.add_image('tr_vis/sampled', torch.as_tensor(res), epoch)
# save checkpoints
if not args.distributed or (args.rank % ngpus_per_node == 0):
if (epoch + 1) % args.save_freq == 0:
save(model, optimizer, epoch + 1,
os.path.join(save_dir, 'checkpoint-%d.pt' % epoch))
save(model, optimizer, epoch + 1,
os.path.join(save_dir, 'checkpoint-latest.pt'))
def main():
# command line args
args = get_args()
save_dir = os.path.join("checkpoints", args.log_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
os.makedirs(os.path.join(save_dir, 'images'))
with open(os.path.join(save_dir, 'command.sh'), 'w') as f:
f.write('python -X faulthandler ' + ' '.join(sys.argv))
f.write('\n')
if args.seed is None:
args.seed = random.randint(0, 1000000)
set_random_seed(args.seed)
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
if args.sync_bn:
assert args.distributed
print("Arguments:")
print(args)
ngpus_per_node = torch.cuda.device_count()
if args.distributed:
args.world_size = ngpus_per_node * args.world_size
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(save_dir, ngpus_per_node, args))
else:
main_worker(args.gpu, save_dir, ngpus_per_node, args)
if __name__ == '__main__':
main()