-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
executable file
·155 lines (134 loc) · 6.19 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import random
import time
import os
import argparse
import logging
import glob
import sys
from vgg import *
from utils import *
parser = argparse.ArgumentParser(description='PyTorch CIFAR Training')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--gamma', default=0.1, type=float)
parser.add_argument('--batch_size', type = int, default = 128)
parser.add_argument('--test_batch_size', type = int, default = 1024)
parser.add_argument('--arch', default='lego_vgg16', type = str, help='architecture')
parser.add_argument('--gpu', default=[0], type = list)
parser.add_argument('--dataset', default = 'c10', type = str)
parser.add_argument('--log_interval', default = 100, type = int)
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='SGD momentum (default: 0.9)')
parser.add_argument('--kernel_size', type=int, default=3, help='3 for resnet like model, 1 for mobilelike model')
parser.add_argument('--weight_decay', type=float, default=0.0005)
parser.add_argument('--seed', type = int, default = 2)
parser.add_argument('--n_split', type = int, default = 2)
parser.add_argument('--epochs', type = int, default = 400)
parser.add_argument('--warmup', type = int, default = 10)
parser.add_argument('--n_lego', type = float, default = 0.5)
parser.add_argument('--balance_weight', type = float, default = 1e-4)
args = parser.parse_args()
args.save = 'Lego-{}-NS{}-NL{}-{}'.format(args.dataset, args.n_split, args.n_lego, time.strftime("%Y%m%d-%H%M%S"))
print(args)
create_exp_dir(args.save, scripts_to_save=glob.glob('*.py'))
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO,
format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(args.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join([str(g) for g in args.gpu])
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
if args.dataset == 'c10':
trainset = torchvision.datasets.CIFAR10(root='../data', train=True, download=False, transform=transform_train)
testset = torchvision.datasets.CIFAR10(root='../data', train=False, download=False, transform=transform_test)
n_classes = 10
trainloader = torch.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=True, pin_memory = True, num_workers=0)
testloader = torch.utils.data.DataLoader(testset, batch_size=args.test_batch_size, shuffle=False, pin_memory = True, num_workers=0)
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# Model
print('==> Building model..')
if args.arch == 'lego_vgg16':
model = lego_vgg16(args.arch, args.n_split, args.n_lego, n_classes)
print(model)
logging.info("args = %s", args)
model = model.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD([p for n, p in model.named_parameters() if p.requires_grad ], lr=args.lr, momentum = args.momentum, weight_decay = args.weight_decay)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs)
def train(epoch, args):
logging.info('\nEpoch: %d, Learning rate: %f', epoch, scheduler.get_lr()[0])
model.train()
train_loss = 0
correct = 0
total = 0
end = time.time()
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.cuda(), targets.cuda()
data_time = time.time()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
model.copy_grad(args.balance_weight)
optimizer.step()
if epoch < args.warmup:
model.copy_grad(args.balance_weight)
optimizer.zero_grad()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
train_loss += loss.item()
model_time = time.time()
if batch_idx % args.log_interval == 0:
logging.info('Train Epoch: %d Process: %d Total: %d Loss: %.06f Data Time: %.03f s Model Time: %.03f s Memory %.03fMB',
epoch, batch_idx * len(inputs), len(trainloader.dataset), loss.item(), data_time - end, model_time - data_time, count_memory(model))
end = time.time()
def test(epoch):
model.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.cuda(), targets.cuda()
outputs = model(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
return correct, test_loss / len(testloader)
if __name__ == '__main__':
cudnn.benchmark = True
torch.cuda.manual_seed(args.seed)
cudnn.enabled = True
torch.manual_seed(args.seed)
max_correct = 0
for epoch in range(args.epochs):
if epoch == args.warmup:
optimizer = optim.SGD([p for n, p in model.named_parameters() if p.requires_grad and 'combination' not in n], lr=args.lr, momentum = args.momentum, weight_decay = args.weight_decay)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs-args.warmup)
scheduler.step()
train(epoch, args)
correct, loss = test(epoch)
if correct > max_correct:
max_correct = correct
torch.save(model, os.path.join(args.save, 'weights.pth'))
logging.info('Epoch %d Correct: %d, Max Correct %d, Loss %.06f', epoch, correct, max_correct, loss)