-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathssim_score_fashion.py
executable file
·52 lines (34 loc) · 1.48 KB
/
ssim_score_fashion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
import os
import cv2
import pickle
import sys
import torch
from .external import pytorch_ssim
def fun(pred_path, gt_path, query_list):
query_num = len(query_list)
scores = []
for i in range(query_num):
if i % 100 == 0:
print(i)
img_rel_path = query_list[i]
l = img_rel_path.split('/')
rel_path = os.path.join(l[1], l[2], l[3], l[4])
if os.path.isfile(os.path.join(pred_path, rel_path.split('.')[0]+'.png')):
img_pred = cv2.imread(os.path.join(pred_path, rel_path.split('.')[0]+'.png'))
img_pred = cv2.cvtColor(img_pred, cv2.COLOR_BGR2RGB)
img_pred = torch.from_numpy(np.rollaxis(img_pred, 2)).float().unsqueeze(0) / 255.0
p = os.path.join(gt_path, rel_path.split('.')[0]+'.jpg')
img_oth = cv2.imread(p)
img_oth = cv2.cvtColor(img_oth, cv2.COLOR_BGR2RGB)
img_oth = torch.from_numpy(np.rollaxis(img_oth, 2)).float().unsqueeze(0) / 255.0
ssim_loss = pytorch_ssim.SSIM(window_size=11)
scores.append(ssim_loss(img_oth, img_pred))
print(len(scores))
return np.mean(scores)
pred_path = sys.argv[1]
gt_path = '/raid/fangzhao/dataset/DeepFashion/In-shop_Clothes_Retrieval_Benchmark/img'
img_data = pickle.load(open(os.path.join('/raid/fangzhao/cmr_py3/cachedir/deepfashion/data', 'train_test_list.pkl'), 'rb'))
query_list = img_data['query_list']
result = fun(pred_path, gt_path, query_list)
print(result)