-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnet_fewc.py
27 lines (23 loc) · 992 Bytes
/
net_fewc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import torch
from torch.utils.data import Dataset, DataLoader
from torch import autograd
from torch.autograd import Variable
import torch.nn.functional as F
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
class CNNMnist(torch.nn.Module):
def __init__(self,lamda=0):
super(CNNMnist, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = torch.nn.Dropout2d()
self.fc1 = torch.nn.Linear(320, 50)
self.fc2 = torch.nn.Linear(50, 10)
self.lamda = lamda
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, x.shape[1]*x.shape[2]*x.shape[3])
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)