-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmemory.py
226 lines (195 loc) · 9.38 KB
/
memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
from __future__ import absolute_import, print_function
import torch
from torch import nn
import math
from torch.nn.parameter import Parameter
from torch.nn import functional as F
import numpy as np
from torch.utils.tensorboard import SummaryWriter
import torch
import torchvision
from torchvision import datasets,transforms
from torch.autograd import Variable
class MemoryUnit(nn.Module):
def __init__(self, ptt_num, num_cls, part_num, fea_dim, shrink_thres=0.0025):
super(MemoryUnit, self).__init__()
'''
the instance PTT is divided into cls_number x ptt_number per cls x part number per ptt
'''
self.num_cls = num_cls
self.ptt_num = ptt_num
self.part_num = part_num
self.mem_dim = ptt_num * num_cls * part_num # M
self.fea_dim = fea_dim # C
self.weight = Parameter(torch.Tensor(self.mem_dim, self.fea_dim)) # M x C
# self.sem_weight = Parameter(torch.Tensor(self.num_cls, self.fea_dim)) # N x C
self.bias = None
self.shrink_thres = shrink_thres
# self.hard_sparse_shrink_opt = nn.Hardshrink(lambd=shrink_thres)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.reweight_layer_part = nn.Conv1d(self.part_num, self.part_num, 1)
self.reweight_layer_ins = nn.Conv1d(self.ptt_num, self.ptt_num, 1)
self.reset_parameters()
def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def get_update_query(self, mem, max_indices, score, query):
m, d = mem.size()
query_update = torch.zeros((m, d)).cuda()
# random_update = torch.zeros((m,d)).cuda()
for i in range(m):
idx = torch.nonzero(max_indices.squeeze(1) == i)
a, _ = idx.size()
# ex = update_indices[0][i]
if a != 0:
# random_idx = torch.randperm(a)[0]
# idx = idx[idx != ex]
# query_update[i] = torch.sum(query[idx].squeeze(1), dim=0)
query_update[i] = torch.sum(((score[idx, i] / torch.max(score[:, i])) * query[idx].squeeze(1)), dim=0)
# random_update[i] = query[random_idx] * (score[random_idx,i] / torch.max(score[:,i]))
else:
query_update[i] = 0
# random_update[i] = 0
return query_update
def forward(self, input, residual=False):
'''
this is a bottom-up hierarchical stastic and summaration module
all steps in main flow follow part -> prototype -> cls
input = NHW x C
total PTT M = num_cls (L) x ptt_num (T) x part_num (P)
dimension C = fea_dim
'''
### for global part-unware instance PTT, act as sub flow
#print("input = ",input.shape)
att_weight = F.linear(input,self.weight)
# we doesn't split the part dimension, there it is part-unaware NHW x M
#print("att_weight = ",att_weight)
import pdb
# pdb.set_trace()
att_weight = F.softmax(att_weight, dim=1) # NHW x M
### update ###
# _, gather_indice = torch.topk(att_weight, 1, dim=1)
# ins_mem_sample_driven = self.get_update_query(self.weight, gather_indice, att_weight,input)
# self.weight.data = F.normalize(ins_mem_sample_driven+ self.weight, dim=1)
if self.shrink_thres > 0:
att_weight = hard_shrink_relu(att_weight, lambd=self.shrink_thres)
att_weight = F.normalize(att_weight, p=1, dim=1)
mem_trans = self.weight.permute(1, 0) # Mem^T, MxC
output_part = F.linear(att_weight, mem_trans) # AttWeight x Mem^T^T = AW x Mem, (TxM) x (MxC) = TxC
### for global part-aware instance PTT
self.reweight_part = self.weight.view(self.num_cls * self.ptt_num, self.fea_dim, -1).permute(0, 2, 1)
self.reweight_part = (torch.sigmoid(self.reweight_layer_part(self.reweight_part)) * self.reweight_part).permute(
0, 2, 1)
self.part_ins_att = self.avgpool(self.reweight_part).squeeze(-1)
ins_att_weight = F.linear(output_part,
self.part_ins_att) # this is for global part-aware instance ptt which is not used in ours [NHW, C] x[C, M] = [NHW, M]
ins_att_weight = F.softmax(ins_att_weight, dim=1) # NHW x LT
if self.shrink_thres > 0:
ins_att_weight = hard_shrink_relu(ins_att_weight, lambd=self.shrink_thres)
ins_att_weight = F.normalize(ins_att_weight, p=1, dim=1)
ins_mem_trans = self.part_ins_att.permute(1, 0) # Mem^T, MxC
output_ins = F.linear(ins_att_weight, ins_mem_trans) # AttWeight x Mem^T^T = AW x Mem, (TxM) x (MxC) = TxC
### for semantic PTT
# pdb.set_trace()
self.reweight_ins = self.part_ins_att.view(self.num_cls, self.ptt_num, self.fea_dim)
self.reweight_ins = (torch.sigmoid(self.reweight_layer_ins(self.reweight_ins)) * self.reweight_ins).permute(0,
2,
1)
self.sem_att = self.avgpool(self.reweight_ins).squeeze(-1)
sem_att_weight = F.linear(output_ins, self.sem_att)
sem_att_weight = F.softmax(sem_att_weight, dim=1)
if self.shrink_thres > 0:
sem_att_weight = hard_shrink_relu(sem_att_weight, lambd=self.shrink_thres)
sem_att_weight = F.normalize(sem_att_weight, p=1, dim=1)
sem_mem_trans = self.sem_att.permute(1, 0)
output_sem = F.linear(sem_att_weight, sem_mem_trans)
if residual:
output_sem += output
# return {'output': output, 'att': att_weight} # output, att_weight
return {'output_sem': output_sem, 'output_part': output_part, 'output_ins': output_ins}
def extra_repr(self):
return 'mem_dim={}, fea_dim={}'.format(
self.mem_dim, self.fea_dim is not None
)
# NxCxHxW -> (NxHxW)xC -> addressing Mem, (NxHxW)xC -> NxCxHxW
class MemModule(nn.Module):
def __init__(self, ptt_num, num_cls, part_num, fea_dim, shrink_thres=0.0025, device='cuda'):
super(MemModule, self).__init__()
self.ptt_num = ptt_num
self.num_cls = num_cls
self.part_num = part_num
ins_mem = False
if ins_mem:
self.mem_dim = ptt_num * num_cls * part_num # part-level instance
else:
self.mem_dim = num_cls # global semantic
self.fea_dim = fea_dim
self.shrink_thres = shrink_thres
self.memory = MemoryUnit(self.ptt_num, self.num_cls, self.part_num, self.fea_dim, self.shrink_thres)
def forward(self, input):
###投偷懒代码###
#self.fea_dim = input[1]
s = input.data.shape
l = len(s)
###############################
#print("s = ",s,"l = ",l)
#############################
if l == 3:
x = input.permute(0, 2, 1)
elif l == 4:
x = input.permute(0, 2, 3, 1)
elif l == 5:
x = input.permute(0, 2, 3, 4, 1)
else:
x = []
print('wrong feature map size')
#print("调整之后 x = ",x.shape)
x = x.contiguous()
x = x.view(-1, s[1])
#print("view之后 x = ",x.shape)
#
y_and = self.memory(x)
#
y_sem = y_and['output_sem']
y_ins = y_and['output_ins']
y_part = y_and['output_part']
# print("memory之后y_sem = ",y_sem.shape)
# print("memory之后y_ins = ",y_ins.shape)
# print("memory之后y_part = ",y_part.shape)
if l == 4:
y_sem = y_sem.view(s[0], s[2], s[3], s[1])
y_sem = y_sem.permute(0, 3, 1, 2)
y_ins = y_ins.view(s[0], s[2], s[3], s[1])
y_ins = y_ins.permute(0, 3, 1, 2)
y_part = y_part.view(s[0], s[2], s[3], s[1])
y_part = y_part.permute(0, 3, 1, 2)
else:
print('wrong feature map size')
# print("再次调整后:")
# print("memory之后y_sem = ",y_sem.shape)
# print("memory之后y_ins = ",y_ins.shape)
# print("memory之后y_part = ",y_part.shape)
################添加融合#####################
tpt = (y_sem + y_ins + y_part) / 3
#print(y_sem[0][0],y_ins[0][0],y_part[0][0],tpt[0][0])
#print(tpt.shape)
return y_sem, y_ins, y_part
#############返回融合值#########################
#return tpt
# relu based hard shrinkage function, only works for positive values
def hard_shrink_relu(input, lambd=0, epsilon=1e-12):
output = (F.relu(input - lambd) * input) / (torch.abs(input - lambd) + epsilon)
return output
####fea_dim等于通道数就可以###########
###输入[1,3,512,512],就会输出三个[1,3,512,512]
p = MemModule(ptt_num = 2, num_cls = 10, part_num = 5, fea_dim = 10)
image = torch.rand(1,10,512,512);
writer = SummaryWriter()
writer.add_graph(p, input_to_model=image, verbose=False)
#print(p)
y = p(image)
writer.flush()
writer.close()
#self.mem_dim self.fea_dim 最后要和 [b,a * c * d]