-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathours_clean.py
79 lines (61 loc) · 2.42 KB
/
ours_clean.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
# Train on CPU (hide GPU) due to memory constraints
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
import torch
import tensorflow as tf
from util.input_data import load_data
from util.utils import preprocess_graph
from arga.link_reconstruction import Link_rec_Runner
from deeprobust.graph.data import Dataset
from deeprobust.graph.defense import GCN
import scipy.sparse as sp
import numpy as np
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=15, help='Random seed.')
parser.add_argument('-d','--dataset', type=str, default='cora', choices=['cora', 'citeseer', 'polblogs'], help='dataset')
args = parser.parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# make sure you use the same data splits as you generated attacks
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
tf.reset_default_graph()
tf.set_random_seed(args.seed)
###########################
# global settings
dataname = args.dataset # 'cora' or 'citeseer' or 'polblogs'
if dataname in ['cora','citeseer','pubmed']:
adj, features, idx_train, idx_val, idx_test, labels = load_data(dataname)
if dataname == "polblogs":
data = Dataset(root='./data/', name=dataname)
adj, features, labels = data.adj, data.features, data.labels
idx_train, idx_val, idx_test = data.idx_train, data.idx_val, data.idx_test
###########################
# vae settings
model = 'arga_vae' #'arga_ae' or 'arga_vae'
iterations = 250
train = True # train or load pretrain
###########################
sparse_search = list(range(1,40))
sparse_rate = [adj.sum() / adj.shape[0]**2 * r for r in sparse_search]
percentiles = [(1-r) * 100 for r in sparse_rate]
reconstructor = Link_rec_Runner(adj, features, model, iterations)
reconstructor.erun(train=train)
print("finishing reconstruction")
result = []
for p in percentiles:
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
print(p)
adj_rec = reconstructor.sparse(p)
adj_rec_norm = preprocess_graph(adj_rec)
model = GCN(nfeat=features.shape[1], nhid=16, nclass=labels.max()+1, device=device)
model = model.to(device)
model.fit(features, adj_rec_norm, labels, idx_train, idx_val, train_iters=200, verbose=False, normalize=False)
model.eval()
acc = model.test(idx_test)
result.append(acc.item())
print(result)