-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbeam_ptr.py
240 lines (194 loc) · 9.13 KB
/
beam_ptr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
### TAKEN FROM https://github.com/HLTCHKUST/PAML
from utils import config
import sys
# reload(sys)
# sys.setdefaultencoding('utf8')
import os
import time
import torch
torch.cuda.set_device(1)
class Beam(object):
def __init__(self, tokens, log_probs, state, context, coverage):
self.tokens = tokens
self.log_probs = log_probs
self.state = state
self.context = context
self.coverage = coverage
def extend(self, token, log_prob, state, context, coverage):
return Beam(tokens = self.tokens + [token],
log_probs = self.log_probs + [log_prob],
state = state,
context = context,
coverage = coverage)
@property
def latest_token(self):
return self.tokens[-1]
@property
def avg_log_prob(self):
return sum(self.log_probs) / len(self.tokens)
def dup_batch(batch, idx, dup_times):
new_batch = {}
input_len = batch["input_lengths"][idx]
for key in ["input_batch", "target_batch"]:
new_batch[key] = batch[key][:input_len, idx:idx+1].repeat(1, dup_times)
if "input_ext_vocab_batch" in batch:
for key in ["input_ext_vocab_batch", "target_ext_vocab_batch"]:
new_batch[key] = batch[key][:input_len, idx:idx+1].repeat(1, dup_times)
new_batch["article_oovs"] = [batch["article_oovs"][idx] for _ in range(dup_times)]
new_batch["max_art_oovs"] = batch["max_art_oovs"]
for key in ["input_txt", "target_txt"]:
new_batch[key] = [batch[key][idx] for _ in range(dup_times)]
for key in ["input_lengths", "target_lengths"]:
new_batch[key] = batch[key][idx:idx+1].repeat(dup_times)
return new_batch
class BeamSearch(object):
def __init__(self, model, lang):
self.model = model
self.lang = lang
self.vocab_size = lang.n_words
def sort_beams(self, beams):
return sorted(beams, key=lambda h: h.avg_log_prob, reverse=True)
def beam_search(self, batch):
batch_size = batch["input_lengths"].size(0)
decoded_sents = []
for i in range(batch_size):
new_batch = dup_batch(batch, i, config.beam_size)
enc_batch, enc_padding_mask, enc_lens, enc_batch_extend_vocab, extra_zeros, c_t_0, coverage_t_0 = get_input_from_batch(new_batch)
# Run beam search to get best Hypothesis
best_summary = self.beam_search_sample(enc_batch, enc_padding_mask, enc_lens,
enc_batch_extend_vocab, extra_zeros, c_t_0, coverage_t_0)
# Extract the output ids from the hypothesis and convert back to words
output_ids = [int(t) for t in best_summary.tokens[1:]]
if config.pointer_gen:
art_oovs = batch["article_oovs"][i]
len_oovs = len(art_oovs)
decoded_words = []
for idx in output_ids:
if idx < self.vocab_size:
decoded_words.append(self.lang.index2word[idx])
elif idx - self.vocab_size < len_oovs:
decoded_words.append(art_oovs[idx - self.vocab_size])
else:
raise ValueError("invalid output id")
else:
decoded_words = [self.lang.index2word[idx] for idx in output_ids]
# Remove the [STOP] token from decoded_words, if necessary
try:
fst_stop_idx = decoded_words.index('EOS')
decoded_words = decoded_words[:fst_stop_idx]
except ValueError:
decoded_words = decoded_words
decoded_sents.append(decoded_words)
return decoded_sents
def beam_search_sample(self, enc_batch, enc_padding_mask, enc_lens, enc_batch_extend_vocab, extra_zeros, c_t_0, coverage_t_0):
#batch should have only one example by duplicate
encoder_outputs, encoder_hidden = self.model.encoder(enc_batch, enc_lens)
s_t_0 = self.model.reduce_state(encoder_hidden)
dec_h, dec_c = s_t_0 # 1 x 2*hidden_size
dec_h = dec_h.squeeze(0)
dec_c = dec_c.squeeze(0)
#decoder batch preparation, it has beam_size example initially everything is repeated
beams = [Beam(tokens=[config.SOS_idx],
log_probs=[0.0],
state=(dec_h[0], dec_c[0]),
context = c_t_0[0],
coverage=(coverage_t_0[0] if config.is_coverage else None))
for _ in range(config.beam_size)]
results = []
steps = 0
while steps < config.max_dec_step and len(results) < config.beam_size:
latest_tokens = [h.latest_token for h in beams]
latest_tokens = [t if t < self.vocab_size else config.UNK_idx \
for t in latest_tokens]
y_t_1 = torch.LongTensor(latest_tokens)
if config.USE_CUDA:
y_t_1 = y_t_1.cuda()
all_state_h =[]
all_state_c = []
all_context = []
for h in beams:
state_h, state_c = h.state
all_state_h.append(state_h)
all_state_c.append(state_c)
all_context.append(h.context)
s_t_1 = (torch.stack(all_state_h, 0).unsqueeze(0), torch.stack(all_state_c, 0).unsqueeze(0))
c_t_1 = torch.stack(all_context, 0)
coverage_t_1 = None
if config.is_coverage:
all_coverage = []
for h in beams:
all_coverage.append(h.coverage)
coverage_t_1 = torch.stack(all_coverage, 0)
final_dist, s_t, c_t, attn_dist, p_gen, coverage_t = self.model.decoder(y_t_1, s_t_1,
encoder_outputs, enc_padding_mask, c_t_1,
extra_zeros, enc_batch_extend_vocab, coverage_t_1, steps, training=False)
topk_log_probs, topk_ids = torch.topk(final_dist, config.beam_size * 2)
dec_h, dec_c = s_t
dec_h = dec_h.squeeze()
dec_c = dec_c.squeeze()
all_beams = []
num_orig_beams = 1 if steps == 0 else len(beams)
for i in range(num_orig_beams):
h = beams[i]
state_i = (dec_h[i], dec_c[i])
context_i = c_t[i]
coverage_i = (coverage_t[i] if config.is_coverage else None)
for j in range(config.beam_size * 2): # for each of the top 2*beam_size hyps:
new_beam = h.extend(token=topk_ids[i, j].item(),
log_prob=topk_log_probs[i, j].item(),
state=state_i,
context=context_i,
coverage=coverage_i)
all_beams.append(new_beam)
beams = []
for h in self.sort_beams(all_beams):
if h.latest_token == config.EOS_idx:
if steps >= config.min_dec_steps:
results.append(h)
else:
beams.append(h)
if len(beams) == config.beam_size or len(results) == config.beam_size:
break
steps += 1
if len(results) == 0:
results = beams
beams_sorted = self.sort_beams(results)
return beams_sorted[0]
def sequence_mask(sequence_length, max_len=None):
if max_len is None:
max_len = sequence_length.data.max()
batch_size = sequence_length.size(0)
seq_range = torch.arange(0, max_len).long()
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
seq_range_expand = seq_range_expand
if sequence_length.is_cuda:
seq_range_expand = seq_range_expand.cuda()
seq_length_expand = (sequence_length.unsqueeze(1)
.expand_as(seq_range_expand))
return seq_range_expand < seq_length_expand
def get_input_from_batch(batch):
enc_batch = batch["input_batch"].transpose(0,1)
enc_lens = batch["input_lengths"]
batch_size, max_enc_len = enc_batch.size()
assert enc_lens.size(0) == batch_size
enc_padding_mask = sequence_mask(enc_lens, max_len=max_enc_len).float()
extra_zeros = None
enc_batch_extend_vocab = None
if config.pointer_gen:
enc_batch_extend_vocab = batch["input_ext_vocab_batch"].transpose(0,1)
# max_art_oovs is the max over all the article oov list in the batch
if batch["max_art_oovs"] > 0:
extra_zeros = torch.zeros((batch_size, batch["max_art_oovs"]))
c_t_1 = torch.zeros((batch_size, 2 * config.hidden_dim))
coverage = None
if config.is_coverage:
coverage = torch.zeros(enc_batch.size())
if config.USE_CUDA:
if enc_batch_extend_vocab is not None:
enc_batch_extend_vocab = enc_batch_extend_vocab.cuda()
if extra_zeros is not None:
extra_zeros = extra_zeros.cuda()
c_t_1 = c_t_1.cuda()
if coverage is not None:
coverage = coverage.cuda()
return enc_batch, enc_padding_mask, enc_lens, enc_batch_extend_vocab, extra_zeros, c_t_1, coverage