-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
176 lines (149 loc) · 6.26 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import argparse
import torch
from torchvision import transforms
import torch.backends.cudnn as cudnn
import datasets
from loss import TokenGuideLoss
from model import TokenHPE
def parse_args():
"""Parse input arguments."""
parser = argparse.ArgumentParser(
description='Train TokenHPE model.')
parser.add_argument(
'--gpu', dest='gpu_id', help='GPU device id to use [0]',
default=0, type=int)
parser.add_argument(
'--num_epochs', dest='num_epochs',
help='Maximum number of training epochs.',
default=60, type=int)
parser.add_argument(
'--batch_size', dest='batch_size', help='Batch size.',
default=64, type=int)
parser.add_argument(
'--lr', dest='lr', help='Base learning rate.',
default=0.00001, type=float)
parser.add_argument(
'--dataset', dest='dataset', help='Dataset type. (BIWI/Pose_300W_LP)',
default='Pose_300W_LP', type=str)
parser.add_argument(
'--data_dir', dest='data_dir', help='Directory path for data.',
default='./datasets/300W_LP', type=str)
# examples
# 300W_LP dataset: './datasets/300W_LP'
# BIWI dataset: "./datasets/BIWI/BIWI_70_30_train.npz"
parser.add_argument(
'--filename_list', dest='filename_list',
help='Path to text file containing relative paths for every example.',
default='./datasets/300W_LP/files.txt', type=str)
# examples
# 300W_LP dataset: "./datasets/300W_LP/files.txt"
parser.add_argument(
'--alpha', dest='alpha', help='alpha in TokenGuideLoss.',
default=0.95, type=float)
# intermediate weights
parser.add_argument(
'--snapshot', dest='snapshot', help='Path of model snapshot.(xxx.tar format)',
default='', type=str)
# pretrained feature extractor weights (ViT)
parser.add_argument(
'--weights', dest='weights', help='Whether to use pretrained VIT-B/16 weights',
default='', type=str)
# examples
# ./weights/vit_base_patch16_224_in21k.pth
parser.add_argument(
'--describe', dest='describe', help='Describe saving directory name.',
default='', type=str)
parser.add_argument(
'--output_string', dest='output_string',
help='String appended to output snapshots.', default='date_MM_DD', type=str)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
cudnn.enabled = True
num_epochs = args.num_epochs
batch_size = args.batch_size
gpu = args.gpu_id
if not os.path.exists('output/snapshots'):
os.makedirs('output/snapshots')
summary_name = '{}_{}_batch_size{}'.format(
'TokenHPE', args.describe, args.batch_size)
if not os.path.exists('output/snapshots/{}'.format(summary_name)):
os.makedirs('output/snapshots/{}'.format(summary_name))
model = TokenHPE(
num_ori_tokens=9,
depth=3,
heads=8,
embedding='sine',
ViT_weights=args.weights,
dim=128,
)
if not args.snapshot == '':
saved_state_dict = torch.load(args.snapshot)
model.load_state_dict(saved_state_dict['model_state_dict'])
print("Intermediate weights used!")
model.to("cuda")
print('Loading data and preprocessing...')
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transformations = transforms.Compose([transforms.Resize(240),
transforms.RandomCrop(224),
transforms.ToTensor(),
normalize])
pose_dataset = datasets.getDataset(
args.dataset, args.data_dir, args.filename_list, transformations)
train_loader = torch.utils.data.DataLoader(
dataset=pose_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
crit = TokenGuideLoss(alpha=args.alpha).cuda(gpu)
pg = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.Adam(pg, lr=args.lr)
if not args.snapshot == '':
optimizer.load_state_dict(saved_state_dict['optimizer_state_dict'])
# learning rate decay
milestones = [20, 40]
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=milestones, gamma=0.5)
print('Starting training.')
for epoch in range(num_epochs):
loss_sum = .0
iter = 0
for i, (images, gt_mat, cont_labels, _) in enumerate(train_loader):
iter += 1
images = torch.Tensor(images).cuda(gpu)
# cont_labels: [batchsize, (pitch_agl, yaw_agl, roll_agl)]
# Forward pass
pred, ori_9_d = model(images)
# pred:final prediction; dir_6_d: prediction on all orientations
overall_loss, pred_loss, ori_loss = crit(gt_mat.cuda(gpu), pred, cont_labels, ori_9_d)
optimizer.zero_grad()
overall_loss.backward()
optimizer.step()
loss_sum += overall_loss.item()
if (i+1) % 5 == 0:
print('Epoch [%d/%d],\t Iteration [%d/%d] \t Overall Loss: %.2f,\t Prediction Loss: %.5f,\t Orientation Loss: %.5f.'
% (
epoch+1,
num_epochs,
i+1,
len(pose_dataset)//batch_size,
overall_loss.item(),
pred_loss.item(),
ori_loss.item(),
)
)
scheduler.step()
# Save models at numbered epochs.
if epoch % 1 == 0 and epoch < num_epochs:
print('Taking snapshot...',
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, 'output/snapshots/' + summary_name + '/' + args.output_string +
'_epoch_' + str(epoch+1) + '.tar')
)