diff --git a/docs/sql-programming-guide.md b/docs/sql-programming-guide.md index 2cbb4c967eb81..549a6fd6ae574 100644 --- a/docs/sql-programming-guide.md +++ b/docs/sql-programming-guide.md @@ -509,8 +509,11 @@ val people = sc.textFile("examples/src/main/resources/people.txt") // The schema is encoded in a string val schemaString = "name age" -// Import Spark SQL data types and Row. -import org.apache.spark.sql._ +// Import Row. +import org.apache.spark.sql.Row; + +// Import Spark SQL data types +import org.apache.spark.sql.types.{StructType,StructField,StringType}; // Generate the schema based on the string of schema val schema = diff --git a/mllib/src/main/scala/org/apache/spark/ml/Pipeline.scala b/mllib/src/main/scala/org/apache/spark/ml/Pipeline.scala index 5bbcd2e080e07..c4a36103303a2 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/Pipeline.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/Pipeline.scala @@ -33,7 +33,7 @@ import org.apache.spark.sql.types.StructType abstract class PipelineStage extends Serializable with Logging { /** - * :: DeveloperAPI :: + * :: DeveloperApi :: * * Derives the output schema from the input schema and parameters. * The schema describes the columns and types of the data. diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala index 46f50708a9184..017b9498e2b2b 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala @@ -89,7 +89,7 @@ private[sql] object DataFrame { * val people = sqlContext.parquetFile("...") * val department = sqlContext.parquetFile("...") * - * people.filter("age" > 30) + * people.filter("age > 30") * .join(department, people("deptId") === department("id")) * .groupBy(department("name"), "gender") * .agg(avg(people("salary")), max(people("age")))