-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathcheckpoint.py
74 lines (67 loc) · 2.63 KB
/
checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import logging
import os
import torch
def _print_state_dict_shapes(state_dict):
logging.info("Model state_dict:")
for param_tensor in state_dict.keys():
logging.info(f"{param_tensor}:\t{state_dict[param_tensor].size()}")
def init_model_from_weights(
model,
state_dict,
skip_layers=None,
print_init_layers=True,
):
"""
Initialize the model from any given params file. This is particularly useful
during the finetuning process or when we want to evaluate a model on a range
of tasks.
skip_layers: string : layer names with this key are not copied
print_init_layers: print whether layer was init or ignored
indicates whether the layername was copied or not
"""
# whether it's a model from somewhere else or a model from this codebase
state_dict = state_dict["model"]
all_layers = model.state_dict()
init_layers = {layername: False for layername in all_layers}
new_state_dict = {}
for param_name in state_dict:
if "module.trunk.0" not in param_name:
continue
param_data = param_name.split(".")
newname = "backbone_net1"
for i in range(len(param_data[3:])):
newname += "."+param_data[i+3]
new_state_dict[newname] = state_dict[param_name]
state_dict = new_state_dict
local_rank = int(os.environ.get("LOCAL_RANK", 0))
not_found, not_init = [], []
for layername in all_layers.keys():
if (
skip_layers and len(skip_layers) > 0 and layername.find(skip_layers) >= 0
) or layername.find("num_batches_tracked") >= 0:
if print_init_layers and (local_rank == 0):
not_init.append(layername)
print(f"Ignored layer:\t{layername}")
continue
if layername in state_dict:
param = state_dict[layername]
if not isinstance(param, torch.Tensor):
param = torch.from_numpy(param)
all_layers[layername].copy_(param)
init_layers[layername] = True
if print_init_layers and (local_rank == 0):
print(f"Init layer:\t{layername}")
else:
not_found.append(layername)
if print_init_layers and (local_rank == 0):
print(f"Not found:\t{layername}")
####################### DEBUG ############################
# _print_state_dict_shapes(model.state_dict())
return model