-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy patheval.py
239 lines (211 loc) · 11.9 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import json
import logging
import argparse
from sentence_transformers import SentenceTransformer, InputExample, LoggingHandler
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator, SimilarityFunction
from data_utils import load_chinese_tsv_data
logging.basicConfig(format='%(asctime)s - %(filename)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, required=True, help="The saved model path for evaluation")
parser.add_argument("--main_similarity", type=str, choices=["cosine", "euclidean", "manhattan", "dot_product"], default=None, help="The main similarity type")
parser.add_argument("--last2avg", action="store_true", help="Use last 2 layer average or not")
parser.add_argument("--firstlastavg", action="store_true", help="Use first and last layers average or not")
args = parser.parse_args()
return args
def load_model(model_path: str, last2avg: bool = False, firstlastavg: bool = False):
model = SentenceTransformer(model_path)
if last2avg:
model[1].pooling_mode_mean_tokens = False
model[1].pooling_mode_mean_last_2_tokens = True
model[0].auto_model.config.output_hidden_states = True
if firstlastavg:
model[1].pooling_mode_mean_tokens = False
model[1].pooling_mode_mean_first_last_tokens = True
model[0].auto_model.config.output_hidden_states = True
logging.info("Model successfully loaded")
return model
def load_paired_samples(input_file: str, label_file: str, scale=5.0):
with open(input_file, "r") as f:
input_lines = [line.strip() for line in f.readlines()]
with open(label_file, "r") as f:
label_lines = [line.strip() for line in f.readlines()]
new_input_lines, new_label_lines = [], []
for idx in range(len(label_lines)):
if label_lines[idx]:
new_input_lines.append(input_lines[idx])
new_label_lines.append(label_lines[idx])
input_lines = new_input_lines
label_lines = new_label_lines
samples = []
for input_line, label_line in zip(input_lines, label_lines):
sent1, sent2 = input_line.split("\t")
samples.append(InputExample(texts=[sent1, sent2], label=float(label_line)/scale))
return samples
def eval_chinese_dataset(model, dataset_name, batch_size=16, output_path="./", main_similarity=None):
logging.info(f"Evaluation on chinese STS task {dataset_name}")
all_samples = load_chinese_tsv_data(dataset_name, "test")
results = {}
logging.info(f"Loaded test examples from {dataset_name} dataset, total {len(all_samples)} examples")
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(all_samples, batch_size=batch_size, name=dataset_name, main_similarity=main_similarity)
best_result = evaluator(model, output_path=output_path)
logging.info(f"Results on {dataset_name}: {best_result:.6f}")
results["all"] = {
"num_samples": len(all_samples),
"best_spearman_joint": best_result
}
with open(os.path.join(output_path, f"{dataset_name}-results.json"), "w") as f:
json.dump(results, f, indent=4, ensure_ascii=False)
return best_result
def eval_sts(model, year, dataset_names, batch_size=16, output_path="./", main_similarity=None):
logging.info(f"Evaluation on STS{year} dataset")
sts_data_path = f"./data/downstream/STS/STS{year}-en-test"
all_samples = []
results = {}
sum_score = 0.0
weighted_sum_score = 0.0
for dataset_name in dataset_names:
input_file = os.path.join(sts_data_path, f"STS.input.{dataset_name}.txt")
label_file = os.path.join(sts_data_path, f"STS.gs.{dataset_name}.txt")
sub_samples = load_paired_samples(input_file, label_file)
sub_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(sub_samples, batch_size=batch_size, name=f"sts-{year}-{dataset_name}", main_similarity=main_similarity)
sub_best_result = sub_evaluator(model, output_path=output_path)
results[dataset_name] = {
"num_samples": len(sub_samples),
"best_spearman": sub_best_result
}
sum_score += sub_best_result
weighted_sum_score += sub_best_result * len(sub_samples)
all_samples.extend(sub_samples)
logging.info(f"Loaded examples from STS{year} dataset, total {len(all_samples)} examples")
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(all_samples, batch_size=batch_size, name=f"sts-{year}", main_similarity=main_similarity)
best_result = evaluator(model, output_path=output_path)
logging.info(f"Results on STS{year}: {best_result:.6f}")
results["all"] = {
"num_samples": len(all_samples),
"best_spearman_joint": best_result,
"best_spearman_mean": sum_score / len(dataset_names),
"best_spearman_wmean": weighted_sum_score / len(all_samples)
}
with open(os.path.join(output_path, f"STS{year}-results.json"), "w") as f:
json.dump(results, f, indent=4, ensure_ascii=False)
return best_result
def eval_sts12(model, batch_size=16, output_path="./", main_similarity=None):
dataset_names = ["MSRpar", "MSRvid", "SMTeuroparl", "surprise.OnWN", "surprise.SMTnews"]
return eval_sts(model, "12", dataset_names, batch_size=batch_size, output_path=output_path, main_similarity=main_similarity)
def eval_sts13(model, batch_size=16, output_path="./", main_similarity=None):
dataset_names = ["headlines", "OnWN", "FNWN"]
return eval_sts(model, "13", dataset_names, batch_size=batch_size, output_path=output_path, main_similarity=main_similarity)
def eval_sts14(model, batch_size=16, output_path="./", main_similarity=None):
dataset_names = ["images", "OnWN", "tweet-news", "deft-news", "deft-forum", "headlines"]
return eval_sts(model, "14", dataset_names, batch_size=batch_size, output_path=output_path, main_similarity=main_similarity)
def eval_sts15(model, batch_size=16, output_path="./", main_similarity=None):
dataset_names = ["answers-forums", "answers-students", "belief", "headlines", "images"]
return eval_sts(model, "15", dataset_names, batch_size=batch_size, output_path=output_path, main_similarity=main_similarity)
def eval_sts16(model, batch_size=16, output_path="./", main_similarity=None):
dataset_names = ["answer-answer", "headlines", "plagiarism", "postediting", "question-question"]
return eval_sts(model, "16", dataset_names, batch_size=batch_size, output_path=output_path, main_similarity=main_similarity)
def eval_stsbenchmark(model, batch_size=16, output_path="./", main_similarity=None):
logging.info("Evaluation on STSBenchmark dataset")
sts_benchmark_data_path = "./data/downstream/STS/STSBenchmark/sts-test.csv"
with open(sts_benchmark_data_path, "r") as f:
lines = [line.strip() for line in f if line.strip()]
samples = []
for line in lines:
_, _, _, _, label, sent1, sent2 = line.split("\t")
samples.append(InputExample(texts=[sent1, sent2], label=float(label) / 5.0))
logging.info(f"Loaded examples from STSBenchmark dataset, total {len(samples)} examples")
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(samples, batch_size=batch_size, name="sts-benchmark", main_similarity=main_similarity)
best_result = evaluator(model, output_path=output_path)
logging.info(f"Results on STSBenchmark: {best_result:.6f}")
results = {
"num_samples": len(samples),
"best_spearman": best_result
}
with open(os.path.join(output_path, "STSBenchmark-results.json"), "w") as f:
json.dump(results, f, indent=4, ensure_ascii=False)
return best_result
def eval_sickr(model, batch_size=16, output_path="./", main_similarity=None):
logging.info("Evaluation on SICK (relatedness) dataset")
sick_data_path = "./data/downstream/SICK/SICK_test_annotated.txt"
with open(sick_data_path, "r") as f:
lines = [line.strip() for line in f if line.strip()]
samples = []
for line in lines[1:]:
_, sent1, sent2, label, _ = line.split("\t")
samples.append(InputExample(texts=[sent1, sent2], label=float(label) / 5.0))
logging.info(f"Loaded examples from SICK dataset, total {len(samples)} examples")
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(samples, batch_size=batch_size, name="sick-r", main_similarity=main_similarity)
best_result = evaluator(model, output_path=output_path)
logging.info(f"Results on SICK (relatedness): {best_result:.6f}")
results = {
"num_samples": len(samples),
"best_spearman": best_result
}
with open(os.path.join(output_path, "SICK-R-results.json"), "w") as f:
json.dump(results, f, indent=4, ensure_ascii=False)
return best_result
def eval_nli_unsup(model_path, main_similarity=None, last2avg=False, firstlastavg=False):
model = load_model(model_path, last2avg=last2avg, firstlastavg=firstlastavg)
if last2avg:
output_path = os.path.join(model_path, "sts_eval_last2")
elif firstlastavg:
output_path = os.path.join(model_path, "sts_eval_first_last")
else:
output_path = os.path.join(model_path, "sts_eval")
if not os.path.exists(output_path):
os.mkdir(output_path)
score_sts12 = eval_sts12(model, output_path=output_path, main_similarity=main_similarity)
score_sts13 = eval_sts13(model, output_path=output_path, main_similarity=main_similarity)
score_sts14 = eval_sts14(model, output_path=output_path, main_similarity=main_similarity)
score_sts15 = eval_sts15(model, output_path=output_path, main_similarity=main_similarity)
score_sts16 = eval_sts16(model, output_path=output_path, main_similarity=main_similarity)
score_stsb = eval_stsbenchmark(model, output_path=output_path, main_similarity=main_similarity)
score_sickr = eval_sickr(model, output_path=output_path, main_similarity=main_similarity)
score_sum = score_sts12 + score_sts13 + score_sts14 + score_sts15 + score_sts16 + score_stsb + score_sickr
score_avg = score_sum / 7.0
logging.info(f"Average score in unsupervised experiments: {score_avg:.6f}")
json.dump({
"sts12": score_sts12,
"sts13": score_sts13,
"sts14": score_sts14,
"sts15": score_sts15,
"sts16": score_sts16,
"stsb": score_stsb,
"sickr": score_sickr,
"average": score_avg
}, open(os.path.join(output_path, "summary.json"), "w"), indent=4)
return score_avg
def eval_chinese_unsup(model_path, dataset_name, batch_size=16, main_similarity=None, last2avg=False, firstlastavg=False):
model = load_model(model_path, last2avg=last2avg, firstlastavg=firstlastavg)
if last2avg:
output_path = os.path.join(model_path, "chinese_last2")
elif firstlastavg:
output_path = os.path.join(model_path, "chinese_first_last")
else:
output_path = os.path.join(model_path, "chinese_last1")
if not os.path.exists(output_path):
os.mkdir(output_path)
score = eval_chinese_dataset(model, dataset_name, batch_size=batch_size, output_path=output_path, main_similarity=main_similarity)
return score
if __name__ == "__main__":
args = parse_args()
model_path = args.model_path
main_similarity = None
if args.main_similarity == "cosine":
main_similarity = SimilarityFunction.COSINE
elif args.main_similarity == "euclidean":
main_similarity = SimilarityFunction.EUCLIDEAN
elif args.main_similarity == "manhattan":
main_similarity = SimilarityFunction.MANHATTAN
elif args.main_similarity == "dot_product":
main_similarity = SimilarityFunction.DOT_PRODUCT
elif args.main_similarity == None:
main_similarity = None
else:
raise ValueError("Invalid similarity type")
eval_nli_unsup(model_path, main_similarity, last2avg=args.last2avg, firstlastavg=args.firstlastavg)