-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathdata_utils.py
248 lines (225 loc) · 10.9 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import os
import json
import random
import logging
import argparse
import io
from sentence_transformers import InputExample, LoggingHandler
logging.basicConfig(format='%(asctime)s - %(filename)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
def save_samples(samples, output_file):
with open(output_file, "w", encoding="utf-8") as f_out:
for sample in samples:
line = "\t".join(sample.texts)
f_out.write(f"{line}\n")
def load_paired_samples(input_file: str, label_file: str, need_label: bool = False, scale=5.0, no_pair=False):
if need_label:
assert not no_pair, "Only paired texts need label"
with open(input_file, "r") as f:
input_lines = [line.strip() for line in f.readlines()]
label_lines = [0]*len(input_lines) # dummy
if label_file!="":
with open(label_file, "r") as f:
label_lines = [line.strip() for line in f.readlines()]
if need_label:
new_input_lines, new_label_lines = [], []
for idx in range(len(label_lines)):
if label_lines[idx]:
new_input_lines.append(input_lines[idx])
new_label_lines.append(label_lines[idx])
input_lines = new_input_lines
label_lines = new_label_lines
samples = []
for input_line, label_line in zip(input_lines, label_lines):
sentences = input_line.split("\t")
if len(sentences)==2:
sent1, sent2 = sentences
else:
sent1, sent2 = sentences[0], None
if need_label:
samples.append(InputExample(texts=[sent1, sent2], label=float(label_line)/scale))
else:
if no_pair:
samples.append(InputExample(texts=[sent1]))
if sent2:
samples.append(InputExample(texts=[sent2]))
else:
samples.append(InputExample(texts=[sent1, sent2]))
return samples
def load_sts(year, dataset_names, need_label=False, no_pair=False):
logging.info(f"Loading STS{year} dataset")
sts_data_path = f"./data/downstream/STS/STS{year}-en-test"
all_samples = []
for dataset_name in dataset_names:
input_file = os.path.join(sts_data_path, f"STS.input.{dataset_name}.txt")
label_file = os.path.join(sts_data_path, f"STS.gs.{dataset_name}.txt")
sub_samples = load_paired_samples(input_file, label_file, need_label=need_label, no_pair=no_pair)
all_samples.extend(sub_samples)
logging.info(f"Loaded examples from STS{year} dataset, total {len(all_samples)} examples")
return all_samples
def load_senteval_binary(task_name, need_label=False, use_all_unsupervised_texts=True, no_pair=True):
if task_name=="mr":
dataset_names = ['rt-polarity.pos', 'rt-polarity.neg']
data_path = f"./data/downstream/MR"
elif task_name=="cr":
dataset_names = ['custrev.pos', 'custrev.neg']
data_path = f"./data/downstream/CR"
elif task_name=="subj":
dataset_names = ['subj.objective', 'subj.subjective']
data_path = f"./data/downstream/SUBJ"
elif task_name=="mpqa":
dataset_names = ['mpqa.pos', 'mpqa.neg']
data_path = f"./data/downstream/MPQA"
all_samples = []
for name in dataset_names:
input_file = os.path.join(data_path, name)
sub_samples = load_paired_samples(input_file, "", need_label=False, no_pair=True)
all_samples.extend(sub_samples)
logging.info(f"Loaded examples from {task_name.upper()} dataset, total {len(all_samples)} examples")
return all_samples
def load_senteval_sst(need_label=False, use_all_unsupervised_texts=True, no_pair=True):
data_path = f"./data/downstream/SST/binary"
samples = []
for name in ["sentiment-dev","sentiment-test","sentiment-train"]:
input_file = os.path.join(data_path, name)
for ln in open(input_file):
sent = ln.strip().split("\t")[0]
samples.append(InputExample(texts=[sent]))
logging.info(f"Loaded examples from SST dataset, total {len(samples)} examples")
return samples
def load_senteval_trec(need_label=False, use_all_unsupervised_texts=True, no_pair=True):
data_path = f"./data/downstream/TREC"
samples = []
for name in ["train_5500.label","TREC_10.label"]:
input_file = os.path.join(data_path, name)
for ln in io.open(input_file, 'r', encoding='latin-1'):
target, sample = ln.strip().split(':', 1)
sample = sample.split(' ', 1)[1]
samples.append(InputExample(texts=[sample]))
logging.info(f"Loaded examples from TREC dataset, total {len(samples)} examples")
return samples
def load_senteval_mrpc(need_label=False, use_all_unsupervised_texts=True, no_pair=True):
data_path = f"./data/downstream/MRPC"
samples = []
for name in ["msr_paraphrase_test.txt","msr_paraphrase_train.txt"]:
input_file = os.path.join(data_path, name)
for ln in open(input_file):
text = ln.strip().split('\t')
samples.append(InputExample(texts=[text[3]]))
samples.append(InputExample(texts=[text[4]]))
logging.info(f"Loaded examples from MRPC dataset, total {len(samples)} examples")
return samples
def load_sts12(need_label=False, use_all_unsupervised_texts=True, no_pair=False):
dataset_names = ["MSRpar", "MSRvid", "SMTeuroparl", "surprise.OnWN", "surprise.SMTnews"]
return load_sts("12", dataset_names, need_label=need_label, no_pair=no_pair)
def load_sts13(need_label=False, use_all_unsupervised_texts=True, no_pair=False):
dataset_names = ["headlines", "OnWN", "FNWN"]
return load_sts("13", dataset_names, need_label=need_label, no_pair=no_pair)
def load_sts14(need_label=False, use_all_unsupervised_texts=True, no_pair=False):
dataset_names = ["images", "OnWN", "tweet-news", "deft-news", "deft-forum", "headlines"]
return load_sts("14", dataset_names, need_label=need_label, no_pair=no_pair)
def load_sts15(need_label=False, use_all_unsupervised_texts=True, no_pair=False):
dataset_names = ["answers-forums", "answers-students", "belief", "headlines", "images"]
return load_sts("15", dataset_names, need_label=need_label, no_pair=no_pair)
def load_sts16(need_label=False, use_all_unsupervised_texts=True, no_pair=False):
dataset_names = ["answer-answer", "headlines", "plagiarism", "postediting", "question-question"]
return load_sts("16", dataset_names, need_label=need_label, no_pair=no_pair)
def load_stsbenchmark(need_label=False, use_all_unsupervised_texts=True, no_pair=False):
if need_label:
assert not no_pair, "Only paired texts need label"
logging.info("Loading STSBenchmark dataset")
all_samples = []
if use_all_unsupervised_texts:
splits = ["train", "dev", "test"]
else:
splits = ["test"]
for split in splits:
sts_benchmark_data_path = f"./data/downstream/STS/STSBenchmark/sts-{split}.csv"
with open(sts_benchmark_data_path, "r") as f:
lines = [line.strip() for line in f if line.strip()]
samples = []
for line in lines:
_, _, _, _, label, sent1, sent2 = line.split("\t")
if need_label:
samples.append(InputExample(texts=[sent1, sent2], label=float(label) / 5.0))
else:
if no_pair:
samples.append(InputExample(texts=[sent1]))
samples.append(InputExample(texts=[sent2]))
else:
samples.append(InputExample(texts=[sent1, sent2]))
all_samples.extend(samples)
logging.info(f"Loaded examples from STSBenchmark dataset, total {len(all_samples)} examples")
return all_samples
def load_sickr(need_label=False, use_all_unsupervised_texts=True, no_pair=False):
if need_label:
assert not no_pair, "Only paired texts need label"
logging.info("Loading SICK (relatedness) dataset")
all_samples = []
if use_all_unsupervised_texts:
splits = ["train", "trial", "test_annotated"]
else:
splits = ["test_annotated"]
for split in splits:
sick_data_path = f"./data/downstream/SICK/SICK_{split}.txt"
with open(sick_data_path, "r") as f:
lines = [line.strip() for line in f if line.strip()]
samples = []
for line in lines[1:]:
_, sent1, sent2, label, _ = line.split("\t")
if need_label:
samples.append(InputExample(texts=[sent1, sent2], label=float(label) / 5.0))
else:
if no_pair:
samples.append(InputExample(texts=[sent1]))
samples.append(InputExample(texts=[sent2]))
else:
samples.append(InputExample(texts=[sent1, sent2]))
all_samples.extend(samples)
logging.info(f"Loaded examples from SICK dataset, total {len(all_samples)} examples")
return all_samples
def load_datasets(datasets=None, need_label=False, use_all_unsupervised_texts=True, no_pair=False):
load_function_mapping = {
"sts12": load_sts12,
"sts13": load_sts13,
"sts14": load_sts14,
"sts15": load_sts15,
"sts16": load_sts16,
"stsb": load_stsbenchmark,
"sickr": load_sickr
}
datasets = datasets or ["sts12", "sts13", "sts14", "sts15", "sts16", "stsb", "sickr"]
all_samples = []
for dataset in datasets:
func = load_function_mapping[dataset]
all_samples.extend(func(need_label=need_label, use_all_unsupervised_texts=use_all_unsupervised_texts, no_pair=no_pair))
logging.info(f"Loaded data from datasets {datasets}, total number of samples {len(all_samples)}")
return all_samples
def load_chinese_tsv_data(dataset_name, split, max_num_samples=None, need_label=False, no_pair=True):
assert dataset_name in ("atec_ccks", "bq", "lcqmc", "pawsx", "stsb")
assert split in ("train", "dev", "test")
base_data_path = "./data/chinese"
data_file = os.path.join(base_data_path, dataset_name, f"{split}.tsv")
all_samples = []
with open(data_file) as f:
lines = f.readlines()
for line in lines:
sent1, sent2, label = line.strip().split("\t")
if split == "train":
if need_label:
all_samples.append(InputExample(texts=[sent1, sent2], label=int(label)))
elif no_pair:
all_samples.append(InputExample(texts=[sent1]))
all_samples.append(InputExample(texts=[sent2]))
else:
all_samples.append(InputExample(texts=[sent1, sent2]))
else:
all_samples.append(InputExample(texts=[sent1, sent2], label=float(label)))
if max_num_samples is not None and max_num_samples < len(all_samples):
all_samples = random.sample(all_samples, max_num_samples)
return all_samples
if __name__ == "__main__":
samples = load_datasets(need_label=False, use_all_unsupervised_texts=True, no_pair=True)
print(samples[0])