-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinput_data.py
96 lines (70 loc) · 2.6 KB
/
input_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#coding=utf-8
import tensorflow as tf
import numpy as np
import os
import matplotlib.pyplot as plt
img_width = 208
img_height = 208
def get_files(path):
cats =[]
label_cats = []
dogs = []
label_dogs = []
for img_file in os.listdir(path):
name = img_file.split('.')
if name[0]=="cat":
cats.append(path+img_file)
label_cats.append(0)
else:
dogs.append(path+img_file)
label_dogs.append(1)
img_list = np.hstack((cats, dogs))
label_list = np.hstack((label_cats, label_dogs))
temp = np.array([img_list, label_list])
temp = temp.transpose()
np.random.shuffle(temp)
img_list = list(temp[:, 0])
label_list = list(temp[:, 1])
label_list = [int(i) for i in label_list]
return img_list, label_list
def get_batch(image, label, image_width, image_height, batch_size, capacity):
image = tf.cast(image, tf.string)
label = tf.cast(label, tf.int32)
input_queue = tf.train.slice_input_producer([image, label])
label = input_queue[1]
image_contents = tf.read_file(input_queue[0])
image = tf.image.decode_jpeg(image_contents, channels=3)
image = tf.image.resize_image_with_crop_or_pad(image, image_width, image_height)
image = tf.image.per_image_standardization(image)
image_batch, label_batch = tf.train.batch([image, label],
batch_size,
num_threads=8,
capacity=capacity)
label_batch = tf.reshape(label_batch, [batch_size])
image_batch = tf.cast(image_batch, tf.float32)
return image_batch, label_batch
def show_img():
BATCH_SIZE = 10
CAPACITY = 256
train_dir = "/Users/yuwhuawang/tensorflow/catsordogs/train/"
img_list, label_list = get_files(train_dir)
img_batch, label_batch = get_batch(img_list, label_list, img_width, img_height, BATCH_SIZE, CAPACITY)
with tf.Session() as sess:
i = 0
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
try:
while not coord.should_stop() and i < 5:
img, label = sess.run([img_batch, label_batch])
for j in np.arange(BATCH_SIZE):
print "label:{}".format(label[j])
plt.imshow(img[j,:,:,:])
plt.show()
i+=1
except tf.errors.OutOfRangeError:
print ("done!")
finally:
coord.request_stop()
coord.join(threads)
if __name__ == '__main__':
show_img()