-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
276 lines (248 loc) · 14.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
# -*- coding: utf-8 -*-
from utils import (
read_data,
input_setup,
imsave,
merge,
gradient,
lrelu,
weights_spectral_norm,
l2_norm
)
import time
import os
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
class CGAN(object):
def __init__(self,
sess,
image_size=132,
label_size=120,
batch_size=32,
c_dim=1,
checkpoint_dir=None,
sample_dir=None):
self.sess = sess
self.is_grayscale = (c_dim == 1)
self.image_size = image_size
self.label_size = label_size
self.batch_size = batch_size
self.c_dim = c_dim
self.checkpoint_dir = checkpoint_dir
self.sample_dir = sample_dir
self.build_model()
def build_model(self):
with tf.name_scope('IR_input'):
#红外图像patch
self.images_ir = tf.placeholder(tf.float32, [None, self.image_size, self.image_size, self.c_dim], name='images_ir')
self.labels_ir = tf.placeholder(tf.float32, [None, self.label_size, self.label_size, self.c_dim], name='labels_ir')
with tf.name_scope('VI_input'):
#可见光图像patch
self.images_vi = tf.placeholder(tf.float32, [None, self.image_size, self.image_size, self.c_dim], name='images_vi')
self.labels_vi = tf.placeholder(tf.float32, [None, self.label_size, self.label_size, self.c_dim], name='labels_vi')
#self.labels_vi_gradient=gradient(self.labels_vi)
#将红外和可见光图像在通道方向连起来,第一通道是红外图像,第二通道是可见光图像
with tf.name_scope('input'):
#self.resize_ir=tf.image.resize_images(self.images_ir, (self.image_size, self.image_size), method=2)
self.input_image=tf.concat([self.images_ir,self.images_vi],axis=-1)
#self.pred=tf.clip_by_value(tf.sign(self.pred_ir-self.pred_vi),0,1)
#融合图像
with tf.name_scope('fusion'):
self.fusion_image=self.fusion_model(self.input_image)
with tf.name_scope('d_loss'):
#判决器对可见光图像和融合图像的预测
#pos=self.discriminator(self.labels_vi,reuse=False)
pos=self.discriminator(self.labels_vi,reuse=False)
neg=self.discriminator(self.fusion_image,reuse=True,update_collection='NO_OPS')
#把真实样本尽量判成1否则有损失(判决器的损失)
#pos_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=pos, labels=tf.ones_like(pos)))
#pos_loss=tf.reduce_mean(tf.square(pos-tf.ones_like(pos)))
pos_loss=tf.reduce_mean(tf.square(pos-tf.random_uniform(shape=[self.batch_size,1],minval=0.7,maxval=1.2)))
#把生成样本尽量判断成0否则有损失(判决器的损失)
#neg_loss=tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=neg, labels=tf.zeros_like(neg)))
#neg_loss=tf.reduce_mean(tf.square(neg-tf.zeros_like(neg)))
neg_loss=tf.reduce_mean(tf.square(neg-tf.random_uniform(shape=[self.batch_size,1],minval=0,maxval=0.3,dtype=tf.float32)))
#self.d_loss=pos_loss+neg_loss
self.d_loss=neg_loss+pos_loss
tf.summary.scalar('loss_d',self.d_loss)
with tf.name_scope('g_loss'):
#self.g_loss_1=tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=neg, labels=tf.ones_like(neg)))
#self.g_loss_1=tf.reduce_mean(tf.square(neg-tf.ones_like(pos)))
self.g_loss_1=tf.reduce_mean(tf.square(neg-tf.random_uniform(shape=[self.batch_size,1],minval=0.7,maxval=1.2,dtype=tf.float32)))
tf.summary.scalar('g_loss_1',self.g_loss_1)
#self.g_loss_2=tf.reduce_mean(tf.square(self.fusion_image - self.labels_ir))
self.g_loss_2=tf.reduce_mean(tf.square(self.fusion_image - self.labels_ir))+5*tf.reduce_mean(tf.square(gradient(self.fusion_image) -gradient (self.labels_vi)))
tf.summary.scalar('g_loss_2',self.g_loss_2)
self.g_loss_total=self.g_loss_1+100*self.g_loss_2
tf.summary.scalar('loss_g',self.g_loss_total)
self.saver = tf.train.Saver(max_to_keep=50)
def train(self, config):
if config.is_train:
input_setup(self.sess, config,"Train_ir")
input_setup(self.sess,config,"Train_vi")
else:
nx_ir, ny_ir = input_setup(self.sess, config,"Test_ir")
nx_vi,ny_vi=input_setup(self.sess, config,"Test_vi")
if config.is_train:
data_dir_ir = os.path.join('./{}'.format(config.checkpoint_dir), "Train_ir","train.h5")
data_dir_vi = os.path.join('./{}'.format(config.checkpoint_dir), "Train_vi","train.h5")
else:
data_dir_ir = os.path.join('./{}'.format(config.checkpoint_dir),"Test_ir", "test.h5")
data_dir_vi = os.path.join('./{}'.format(config.checkpoint_dir),"Test_vi", "test.h5")
train_data_ir, train_label_ir = read_data(data_dir_ir)
train_data_vi, train_label_vi = read_data(data_dir_vi)
#找训练时更新的变量组(判决器和生成器是分开训练的,所以要找到对应的变量)
t_vars = tf.trainable_variables()
self.d_vars = [var for var in t_vars if 'discriminator' in var.name]
print(self.d_vars)
self.g_vars = [var for var in t_vars if 'fusion_model' in var.name]
print(self.g_vars)
# clip_ops = []
# for var in self.d_vars:
# clip_bounds = [-.01, .01]
# clip_ops.append(
# tf.assign(
# var,
# tf.clip_by_value(var, clip_bounds[0], clip_bounds[1])
# )
# )
# self.clip_disc_weights = tf.group(*clip_ops)
# Stochastic gradient descent with the standard backpropagation
with tf.name_scope('train_step'):
self.train_fusion_op = tf.train.AdamOptimizer(config.learning_rate).minimize(self.g_loss_total,var_list=self.g_vars)
self.train_discriminator_op=tf.train.AdamOptimizer(config.learning_rate).minimize(self.d_loss,var_list=self.d_vars)
#将所有统计的量合起来
self.summary_op = tf.summary.merge_all()
#生成日志文件
self.train_writer = tf.summary.FileWriter(config.summary_dir + '/train',self.sess.graph,flush_secs=60)
tf.initialize_all_variables().run()
counter = 0
start_time = time.time()
# if self.load(self.checkpoint_dir):
# print(" [*] Load SUCCESS")
# else:
# print(" [!] Load failed...")
if config.is_train:
print("Training...")
for ep in xrange(config.epoch):
# Run by batch images
batch_idxs = len(train_data_ir) // config.batch_size
for idx in xrange(0, batch_idxs):
batch_images_ir = train_data_ir[idx*config.batch_size : (idx+1)*config.batch_size]
batch_labels_ir = train_label_ir[idx*config.batch_size : (idx+1)*config.batch_size]
batch_images_vi = train_data_vi[idx*config.batch_size : (idx+1)*config.batch_size]
batch_labels_vi = train_label_vi[idx*config.batch_size : (idx+1)*config.batch_size]
counter += 1
for i in range(2):
_, err_d= self.sess.run([self.train_discriminator_op, self.d_loss], feed_dict={self.images_ir: batch_images_ir, self.images_vi: batch_images_vi, self.labels_vi: batch_labels_vi,self.labels_ir:batch_labels_ir})
# self.sess.run(self.clip_disc_weights)
_, err_g,summary_str= self.sess.run([self.train_fusion_op, self.g_loss_total,self.summary_op], feed_dict={self.images_ir: batch_images_ir, self.images_vi: batch_images_vi, self.labels_ir: batch_labels_ir,self.labels_vi:batch_labels_vi})
#将统计的量写到日志文件里
self.train_writer.add_summary(summary_str,counter)
if counter % 10 == 0:
print("Epoch: [%2d], step: [%2d], time: [%4.4f], loss_d: [%.8f],loss_g:[%.8f]" \
% ((ep+1), counter, time.time()-start_time, err_d,err_g))
#print(a)
self.save(config.checkpoint_dir, ep)
else:
print("Testing...")
result = self.fusion_image.eval(feed_dict={self.images_ir: train_data_ir, self.labels_ir: train_label_ir,self.images_vi: train_data_vi, self.labels_vi: train_label_vi})
result=result*127.5+127.5
result = merge(result, [nx_ir, ny_ir])
result = result.squeeze()
image_path = os.path.join(os.getcwd(), config.sample_dir)
image_path = os.path.join(image_path, "test_image.png")
imsave(result, image_path)
def fusion_model(self,img):
with tf.variable_scope('fusion_model'):
with tf.variable_scope('layer1'):
weights=tf.get_variable("w1",[5,5,2,256],initializer=tf.truncated_normal_initializer(stddev=1e-3))
weights=weights_spectral_norm(weights)
bias=tf.get_variable("b1",[256],initializer=tf.constant_initializer(0.0))
conv1_ir= tf.contrib.layers.batch_norm(tf.nn.conv2d(img, weights, strides=[1,1,1,1], padding='VALID') + bias, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True)
conv1_ir = lrelu(conv1_ir)
with tf.variable_scope('layer2'):
weights=tf.get_variable("w2",[5,5,256,128],initializer=tf.truncated_normal_initializer(stddev=1e-3))
weights=weights_spectral_norm(weights)
bias=tf.get_variable("b2",[128],initializer=tf.constant_initializer(0.0))
conv2_ir= tf.contrib.layers.batch_norm(tf.nn.conv2d(conv1_ir, weights, strides=[1,1,1,1], padding='VALID') + bias, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True)
conv2_ir = lrelu(conv2_ir)
with tf.variable_scope('layer3'):
weights=tf.get_variable("w3",[3,3,128,64],initializer=tf.truncated_normal_initializer(stddev=1e-3))
weights=weights_spectral_norm(weights)
bias=tf.get_variable("b3",[64],initializer=tf.constant_initializer(0.0))
conv3_ir= tf.contrib.layers.batch_norm(tf.nn.conv2d(conv2_ir, weights, strides=[1,1,1,1], padding='VALID') + bias, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True)
conv3_ir = lrelu(conv3_ir)
with tf.variable_scope('layer4'):
weights=tf.get_variable("w4",[3,3,64,32],initializer=tf.truncated_normal_initializer(stddev=1e-3))
weights=weights_spectral_norm(weights)
bias=tf.get_variable("b4",[32],initializer=tf.constant_initializer(0.0))
conv4_ir= tf.contrib.layers.batch_norm(tf.nn.conv2d(conv3_ir, weights, strides=[1,1,1,1], padding='VALID') + bias, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True)
conv4_ir = lrelu(conv4_ir)
with tf.variable_scope('layer5'):
weights=tf.get_variable("w5",[1,1,32,1],initializer=tf.truncated_normal_initializer(stddev=1e-3))
weights=weights_spectral_norm(weights)
bias=tf.get_variable("b5",[1],initializer=tf.constant_initializer(0.0))
conv5_ir= tf.nn.conv2d(conv4_ir, weights, strides=[1,1,1,1], padding='VALID') + bias
conv5_ir=tf.nn.tanh(conv5_ir)
return conv5_ir
def discriminator(self,img,reuse,update_collection=None):
with tf.variable_scope('discriminator',reuse=reuse):
print(img.shape)
with tf.variable_scope('layer_1'):
weights=tf.get_variable("w_1",[3,3,1,32],initializer=tf.truncated_normal_initializer(stddev=1e-3))
weights=weights_spectral_norm(weights,update_collection=update_collection)
bias=tf.get_variable("b_1",[32],initializer=tf.constant_initializer(0.0))
conv1_vi=tf.nn.conv2d(img, weights, strides=[1,2,2,1], padding='VALID') + bias
conv1_vi = lrelu(conv1_vi)
#print(conv1_vi.shape)
with tf.variable_scope('layer_2'):
weights=tf.get_variable("w_2",[3,3,32,64],initializer=tf.truncated_normal_initializer(stddev=1e-3))
weights=weights_spectral_norm(weights,update_collection=update_collection)
bias=tf.get_variable("b_2",[64],initializer=tf.constant_initializer(0.0))
conv2_vi= tf.contrib.layers.batch_norm(tf.nn.conv2d(conv1_vi, weights, strides=[1,2,2,1], padding='VALID') + bias, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True)
conv2_vi = lrelu(conv2_vi)
#print(conv2_vi.shape)
with tf.variable_scope('layer_3'):
weights=tf.get_variable("w_3",[3,3,64,128],initializer=tf.truncated_normal_initializer(stddev=1e-3))
weights=weights_spectral_norm(weights,update_collection=update_collection)
bias=tf.get_variable("b_3",[128],initializer=tf.constant_initializer(0.0))
conv3_vi= tf.contrib.layers.batch_norm(tf.nn.conv2d(conv2_vi, weights, strides=[1,2,2,1], padding='VALID') + bias, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True)
conv3_vi=lrelu(conv3_vi)
#print(conv3_vi.shape)
with tf.variable_scope('layer_4'):
weights=tf.get_variable("w_4",[3,3,128,256],initializer=tf.truncated_normal_initializer(stddev=1e-3))
weights=weights_spectral_norm(weights,update_collection=update_collection)
bias=tf.get_variable("b_4",[256],initializer=tf.constant_initializer(0.0))
conv4_vi= tf.contrib.layers.batch_norm(tf.nn.conv2d(conv3_vi, weights, strides=[1,2,2,1], padding='VALID') + bias, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True)
conv4_vi=lrelu(conv4_vi)
conv4_vi = tf.reshape(conv4_vi,[self.batch_size,6*6*256])
with tf.variable_scope('line_5'):
weights=tf.get_variable("w_5",[6*6*256,1],initializer=tf.truncated_normal_initializer(stddev=1e-3))
weights=weights_spectral_norm(weights,update_collection=update_collection)
bias=tf.get_variable("b_5",[1],initializer=tf.constant_initializer(0.0))
line_5=tf.matmul(conv4_vi, weights) + bias
#conv3_vi= tf.contrib.layers.batch_norm(conv3_vi, decay=0.9, updates_collections=None, epsilon=1e-5, scale=True)
return line_5
def save(self, checkpoint_dir, step):
model_name = "CGAN.model"
model_dir = "%s_%s" % ("CGAN", self.label_size)
checkpoint_dir = os.path.join(checkpoint_dir, model_dir)
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
self.saver.save(self.sess,
os.path.join(checkpoint_dir, model_name),
global_step=step)
def load(self, checkpoint_dir):
print(" [*] Reading checkpoints...")
model_dir = "%s_%s" % ("CGAN", self.label_size)
checkpoint_dir = os.path.join(checkpoint_dir, model_dir)
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
print(ckpt_name)
self.saver.restore(self.sess, os.path.join(checkpoint_dir,ckpt_name))
return True
else:
return False