-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathetl.py
156 lines (127 loc) · 4.03 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import glob
import psycopg2
import pandas as pd
from sql_queries import *
def process_song_file(cur, filepath):
"""Read a song file and
insert data to songs and artists tables
Args:
cur (psycopg2.cursor): The psycopg2 cursor
filepath (str): The location of the song file
"""
# open song file
df = pd.read_json(filepath, lines=True)
df['year'] = df['year'].apply(lambda x: x if x != 0 else None)
df = df.replace({pd.np.nan: None, "": None})
# insert song record
song_data = df[[
'song_id',
'title',
'artist_id',
'year',
'duration'
]].values[0]
cur.execute(song_table_insert, song_data)
# insert artist record
artist_data = df[[
'artist_id',
'artist_name',
'artist_location',
'artist_latitude',
'artist_longitude'
]].values[0]
cur.execute(artist_table_insert, artist_data)
def process_log_file(cur, filepath):
"""Read a log file and
insert data to time, users and songplays tables
Args:
cur (psycopg2.cursor): The psycopg2 cursor
filepath (str): The location of the log file
"""
# open log file
df = pd.read_json(filepath, lines=True)
# filter by NextSong action
df = df[df['page'] == 'NextSong']
# convert timestamp column to datetime
t = pd.to_datetime(df['ts'], unit='ms')
# insert time data records
time_data = pd.concat([
t,
t.dt.hour,
t.dt.day,
t.dt.week,
t.dt.month,
t.dt.year,
t.dt.weekday], axis=1)
column_labels = [
'start_time',
'hour',
'day',
'week',
'month',
'year',
'weekday'
]
time_df = pd.DataFrame(data=time_data.values, columns=column_labels)
for i, row in time_df.iterrows():
cur.execute(time_table_insert, list(row))
# load user table
user_df = df[['userId', 'firstName', 'lastName', 'gender', 'level']]
# insert user records
for i, row in user_df.iterrows():
cur.execute(user_table_insert, row)
# insert songplay records
for index, row in df.iterrows():
# get songid and artistid from song and artist tables
cur.execute(song_select, (row.song, row.artist, row.length))
results = cur.fetchone()
if results:
songid, artistid = results
else:
songid, artistid = None, None
# insert songplay record
songplay_data = (
pd.to_datetime(row.ts, unit='ms'),
row.userId,
row.level,
songid,
artistid,
row.sessionId,
row.location,
row.userAgent
)
cur.execute(songplay_table_insert, songplay_data)
def process_data(cur, conn, filepath, func):
"""Read all files from the given location and
execute the specified function
Args:
cur (psycopg2.cursor): The psycopg2 cursor
conn (psycopg2.connection): The database connection
filepath (str): The location of files to be processed
func (function): The function to execute
"""
# get all files matching extension from directory
all_files = []
for root, dirs, files in os.walk(filepath):
files = glob.glob(os.path.join(root, '*.json'))
for f in files:
all_files.append(os.path.abspath(f))
# get total number of files found
num_files = len(all_files)
print('{} files found in {}'.format(num_files, filepath))
# iterate over files and process
for i, datafile in enumerate(all_files, 1):
func(cur, datafile)
conn.commit()
print('{}/{} files processed.'.format(i, num_files))
def main():
conn = psycopg2.connect(
"host=127.0.0.1 dbname=sparkifydb user=student password=student"
)
cur = conn.cursor()
process_data(cur, conn, filepath='data/song_data', func=process_song_file)
process_data(cur, conn, filepath='data/log_data', func=process_log_file)
conn.close()
if __name__ == "__main__":
main()