forked from insarlab/MintPy
-
Notifications
You must be signed in to change notification settings - Fork 5
/
s1_utils.py
218 lines (182 loc) · 9.64 KB
/
s1_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""Utilities for Sentinel-1."""
############################################################
# Program is part of MintPy #
# Copyright (c) 2013, Zhang Yunjun, Heresh Fattahi #
# Author: Zhang Yunjun, Aug 2021 #
############################################################
# Recommend import:
# from mintpy.utils import s1_utils
import os
import re
import numpy as np
from mintpy.objects import timeseries
from mintpy.utils import ptime, time_func
def estimate_s1ab_bias(mintpy_dir, ts_dis, safe_list_file=None):
"""Estimate the bias between Sentinel-1 A and B.
Parameters: mintpy_dir - str, path of the mintpy working directory
ts_dis - 2D np.ndarray in size of (num_date, num_pixel) in float32
safe_list_file - str, path of the SAFE_files.txt file
Returns: bias - 1D np.ndarray in size of (num_pixel) in float32
flagA/B - 1D np.ndarray in size of (num_date) in bool
dates_fit - list of datetime.datetime objects
ts_fitA/B - 2D np.ndarray in size of (num_date_fit, num_pixel) in float32
"""
# dates/flags for S1A/B
(s1a_date_list_file,
s1b_date_list_file) = get_s1ab_date_list_file(mintpy_dir, safe_list_file, print_msg=False)
date_listA = np.loadtxt(s1a_date_list_file, dtype=str).tolist()
date_listB = np.loadtxt(s1b_date_list_file, dtype=str).tolist()
date_list = sorted(date_listA + date_listB)
num_date = len(date_list)
min_date = date_listB[0]
flagA = np.array([x in date_listA and x >= min_date for x in date_list], dtype=np.bool_)
flagB = np.array([x in date_listB and x >= min_date for x in date_list], dtype=np.bool_)
# update date_list to the shared time period only
date_listA = np.array(date_list)[flagA].tolist()
date_listB = np.array(date_list)[flagB].tolist()
if not date_listA or not date_listB:
sname = 'S1A' if not date_listA else 'S1B'
msg = f'WARNING: NO {sname} acquisitions in the time series, thus,'
msg += ' can NOT estimate S1A/B bias from it.'
print(msg)
return None, flagA, flagB, None, None, None
# fit
ts_dis = ts_dis.reshape(num_date, -1)
model = dict(polynomial=1)
mA = time_func.estimate_time_func(model, date_listA, ts_dis[flagA, :], ref_date=date_listA[0])[1]
mB = time_func.estimate_time_func(model, date_listB, ts_dis[flagB, :], ref_date=date_listB[0])[1]
# grab bias/offset from the fitting time-series
date_list_fit = ptime.get_date_range(min_date, date_list[-1], dstep=1)
dates_fit = ptime.date_list2vector(date_list_fit)[0]
GA_fit = time_func.get_design_matrix4time_func(date_list_fit, model, ref_date=date_listA[0])
GB_fit = time_func.get_design_matrix4time_func(date_list_fit, model, ref_date=date_listB[0])
ts_fitA = np.matmul(GA_fit, mA)
ts_fitB = np.matmul(GB_fit, mB)
bias = np.median(ts_fitB - ts_fitA, axis=0)
# ignore zero bias values
bias[bias == 0] = np.nan
return bias, flagA, flagB, dates_fit, ts_fitA, ts_fitB
def get_s1ab_date_list_file(mintpy_dir, safe_list_file=None, print_msg=True):
"""Get (and generate if not exist) the date list file of S1A/B.
Parameters: mintpy_dir - str, path of mintpy working directory
safe_list_file - str, path of SAFE_files.txt file
Returns: s1a/b_date_list_file - str, path of S1A/B_date.txt file
"""
vprint = print if print_msg else lambda *args, **kwargs: None
mintpy_dir = os.path.abspath(mintpy_dir)
s1a_date_list_file = os.path.join(mintpy_dir, 'S1A_date.txt')
s1b_date_list_file = os.path.join(mintpy_dir, 'S1B_date.txt')
if not os.path.isfile(s1a_date_list_file):
# get SAFE list filename
if not safe_list_file:
safe_list_file = os.path.join(os.path.dirname(mintpy_dir), 'SAFE_files.txt')
if not os.path.isfile(safe_list_file):
msg = f'Required file NOT found in: {safe_list_file}!'
msg += '\nIt can be generated as: "ls ./SLC > SAFE_files.txt".'
raise FileNotFoundError(msg)
# get date/sensor_list
vprint('\nread sensor info from file:', safe_list_file)
ts_files = [os.path.join(mintpy_dir, f'timeseries{x}.h5') for x in ['', 'Rg', 'Az']]
ts_file = [x for x in ts_files if os.path.isfile(x)][0]
date_list = timeseries(ts_file).get_date_list()
sensor_list = safe_list_file2sensor_list(safe_list_file, date_list, print_msg=False)[0]
# write to text file for easy access by other scripts
s1a_date_list = [i for i, j in zip(date_list, sensor_list) if j == 'S1A']
s1b_date_list = [i for i, j in zip(date_list, sensor_list) if j == 'S1B']
np.savetxt(s1a_date_list_file, np.array(s1a_date_list).reshape(-1,1), fmt='%s')
vprint(f'write file: {s1a_date_list_file}')
if len(s1b_date_list) > 0:
np.savetxt(s1b_date_list_file, np.array(s1b_date_list).reshape(-1,1), fmt='%s')
vprint(f'write file: {s1b_date_list_file}')
else:
vprint(f'S1A/B_date.txt files exist in: {mintpy_dir}.')
return s1a_date_list_file, s1b_date_list_file
def safe_list_file2sensor_list(safe_list_file, date_list=None, print_msg=True):
"""Get list of Sentinel-1 sensor names from txt file with SAFE file names.
Parameters: safe_list_file - str, path of the text file with Sentinel-1 SAFE file path
E.g. SAFE_files.txt
date_list - list of str in YYYYMMDD format, reference list of dates
Returns: sensor_list - list of str in S1A or S1B
date_list - list of str in YYYYMMDD format
Example:
date_list = timeseries('timeseries.h5').get_date_list()
sensor_list = safe_list_file2sensor_list('../SAFE_files.txt',
date_list=date_list,
print_msg=False)[0]
s1b_dates = [i for i, j in zip(date_list, sensor_list) if j == 'S1B']
np.savetxt('S1B_date.txt', np.array(s1b_dates).reshape(-1,1), fmt='%s')
"""
# read txt file
fc = np.loadtxt(safe_list_file, dtype=str).astype(str).tolist()
safe_fnames = [os.path.basename(i) for i in fc]
# get date_list
date_list_out = [re.findall(r'_\d{8}T', i)[0][1:-1] for i in safe_fnames]
date_list_out = sorted(list(set(date_list_out)))
# get sensor_list
sensor_list = []
for d in date_list_out:
safe_fname = [i for i in safe_fnames if d in i][0]
sensor = safe_fname.split('_')[0]
sensor_list.append(sensor)
# update against date_list_out
if date_list is not None:
# check possible missing dates
dates_missing = [i for i in date_list if i not in date_list_out]
if dates_missing:
raise ValueError(f'The following dates are missing:\n{dates_missing}')
# prune dates not-needed
flag = np.array([i in date_list for i in date_list_out], dtype=np.bool_)
if np.sum(flag) > 0:
sensor_list = np.array(sensor_list)[flag].tolist()
dates_removed = np.array(date_list_out)[~flag].tolist()
date_list_out = np.array(date_list_out)[flag].tolist()
if print_msg:
print(f'The following dates are not needed and removed:\n{dates_removed}')
return sensor_list, date_list
def get_subswath_masks(flag, cut_overlap_in_half=False):
"""Get the 3 masks for each of the Sentinel-1 subswath.
Parameters: flag - 2D np.ndarray in size of (length, width) in bool for valid observations
cut_overlap_in_half - bool, turn on for offset estimated with very large chip size
Returns: mask1/2/3 - 2D np.ndarray in size of (length, width) in bool
box1/2/3 - list of (x0, y0, x1, y1) in int
Examples: flag = readfile.read('inputs/geometryRadar.h5', datasetName='height')[0] != 0
mask1, mask2, mask3 = s1_utils.get_subswath_masks(flag)[:3]
"""
length, width = flag.shape
iw1_x0 = 0
iw3_x1 = width
# get ymin/max based on the rough center colomn number for each subswath
x1, x2, x3 = int(width/6), int(width*3/6), int(width*5/6)
yind = np.where(flag[:, x1])[0]; iw1_y0, iw1_y1 = yind[0], yind[-1]
yind = np.where(flag[:, x2])[0]; iw2_y0, iw2_y1 = yind[0], yind[-1]
yind = np.where(flag[:, x3])[0]; iw3_y0, iw3_y1 = yind[0], yind[-1]
# get xmin/max based on the non-overlap rows
y0 = int((iw1_y0 + iw2_y0) / 2)
y1 = int((iw1_y1 + iw2_y1) / 2)
xs = [np.where(np.diff(flag[y0, :]))[0][0],
np.where(np.diff(flag[y1, :]))[0][0]]
iw2_x0, iw1_x1 = min(xs), max(xs)
y0 = int((iw2_y0 + iw3_y0) / 2)
y1 = int((iw2_y1 + iw3_y1) / 2)
xs = [np.where(np.diff(flag[y0, :]))[0][-1],
np.where(np.diff(flag[y1, :]))[0][-1]]
iw3_x0, iw2_x1 = min(xs), max(xs)
# iw1/2/3_x0/y0/x1/y1 --> box1/2/3
box1 = [iw1_x0, iw1_y0, iw1_x1, iw1_y1]
box2 = [iw2_x0, iw2_y0, iw2_x1, iw2_y1]
box3 = [iw3_x0, iw3_y0, iw3_x1, iw3_y1]
# adjust subswath overlap in X
if cut_overlap_in_half:
box2[0] += int((box1[2] - box2[0]) / 2)
box3[0] += int((box2[2] - box3[0]) / 2)
# initiate mask
mask1 = np.zeros((length, width), dtype=np.bool_)
mask2 = np.zeros((length, width), dtype=np.bool_)
mask3 = np.zeros((length, width), dtype=np.bool_)
# assign mask for each subswath
mask1[box1[1]:box1[3], box1[0]:box1[2]] = 1
mask2[box2[1]:box2[3], box2[0]:box2[2]] = 1
mask3[box3[1]:box3[3], box3[0]:box3[2]] = 1
mask1[mask2==1] = 0
mask2[mask3==1] = 0
return mask1, mask2, mask3, box1, box2, box3